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Abstract— Cyanobacterial harmful algal blooms are an
increasing threat to coastal and inland waters. These blooms
can be detected using optical radiometers due to the presence
of phycocyanin (PC) pigments. The spectral resolution of best-
available multispectral sensors limits their ability to diagnosti-
cally detect PC in the presence of other photosynthetic pigments.
To assess the role of spectral resolution in the determination of
PC, a large (N = 905) database of colocated in situ radiometric
spectra and PC are employed. We first examine the performance
of selected widely used machine-learning (ML) models against
that of benchmark algorithms for hyperspectral remote sensing
reflectance (Rrs) spectra resampled to the spectral configuration
of the Hyperspectral Imager for the Coastal Ocean (HICO) with
a full-width at half-maximum (FWHM) of < 6 nm. Results
show that the multilayer perceptron (MLP) neural network
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applied to HICO spectral configurations (median errors < 65%)
outperforms other ML models. This model is subsequently
applied to Rrs spectra resampled to the band configuration of
existing satellite instruments and of the one proposed for the
next Landsat sensor. These results confirm that employing MLP
models to estimate PC from hyperspectral data delivers tangi-
ble improvements compared with retrievals from multispectral
data and benchmark algorithms (with median errors between
∼73% and 126%) and shows promise for developing a globally
applicable cyanobacteria measurement approach.

Index Terms— Cyanobacteria harmful algal bloom (Cyano
HAB), hyperspectral, machine learning (ML), neural network,
phycocyanin (PC), spectral resolution.

I. INTRODUCTION

CYANOBACTERIAL harmful algal blooms (Cyano
HABs; see Table I for a list of terms and acronyms) are

a major threat to water quality and public health in coastal and
inland waters [1]. Several common, bloom-forming species are
able to accumulate at the water surface and produce odorous
compounds, decreasing the esthetic value of the water and
hampering recreational activities. The most notorious bloom-
forming species exhibit strains which produce toxins that
affect animals and humans [2], posing a particular risk in
such surface accumulations. Cyanobacteria constitute various
species which differ significantly in cell size, morphology,
and toxicity [3]. Therefore, implementing standards for Cyano
HAB monitoring and assessment is challenging. Furthermore,
due to limited capabilities and resources available to agencies,
there is no routine assessment and monitoring of Cyano
HABs in many inland waters of the world. However, frequent
monitoring of water quality at regional and global scales is
still required to predict when and where outbreaks may occur.
Thus, policymakers and water resources managers can take
proactive measures to mitigate the adverse impacts of water
pollution [4]. Conventional monitoring, including shore-based
or ship surveys and buoy stations, is relatively costly, time-
consuming, and labor intensive and requires high technical
skills. More imperative is that these methods can seldom
capture the spatial distribution of cyanobacteria, especially
when these form patchy, often wind-driven, surface scums [5].
As a result, discrete observations often lack sufficient spa-
tial and temporal information for decision-making. Remote
sensing-based monitoring, on the other hand, has the potential
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TABLE I

LIST OF TERMS AND ACRONYMS

to provide a high degree of spatial and temporal resolu-
tion over extensive spatial scales and direct strategic field-
based monitoring. Therefore, remote sensing monitoring is
complementary to field-based monitoring, with near-real-time
capabilities, for measuring Cyano HAB magnitude, extent,
frequency, and duration [6]–[13].

Remote sensing techniques which rely on optical charac-
teristics of accessory photosynthetic pigments can facilitate
the detection and mapping of freshwater cyanobacteria using
optical sensors [2]. Phycocyanin (PC) has been used as an
indicator of cyanobacteria presence due to the distinct double
optical characteristic of an absorption peak at around 620 nm
and fluorescence peak at 650 nm [14]–[17]. However, different
studies have relied on optical features at various wavelengths
to obtain cyanobacteria abundance. Yan et al. [18] provide
a comprehensive overview of remote sensing PC retrieval
algorithms. These algorithms represent three main categories:
empirical band-ratio algorithms, semianalytical algorithms,
and baseline algorithms. Vincent et al. [19] proposed an

empirical spectral-ratio approach, using a combination of
Landsat Thematic Mapper (TM) visible, near-, and mid-
infrared spectral bands (1, 3, 4, 5, and 7) to estimate PC
in Lake Erie. The dark-object subtraction method [20] was
applied on each band to reduce the effects of atmospheric haze.
Therefore, this study does not include a diagnostic PC optical
feature and correlations are demonstrated between cyanobacte-
ria in abundance and the color of water. Li et al. [21] estimated
chlorophyll-a (Chla) and PC from hyperspectral airborne
imaging spectrometer for applications (AISA) imagery for
a mesotrophic reservoir in Central Indiana. Spectral indices
derived from AISA reflectance spectra were regressed against
measured pigment concentrations. The authors found the high-
est correlation between PC and a reflectance trough at 628 nm.
Simis et al. [22] presented a semianalytical algorithm for
retrieval of PC in turbid, cyanobacteria-dominated waters. The
algorithm was suggested for application to sensors that record
reflectance in the wavelengths of the PC absorption peak
(around 620 nm), Chla absorption (around 675 nm), and far
red (>705 nm) and near-infrared (between 760 and 800 nm).
Hunter et al. [23] compared the performance of analytically
based algorithms (including the algorithm developed in [22])
against empirical band-ratio algorithms for retrieving PC using
Compact Airborne Spectrographic Imager-2 (CASI-2) and
hyperspectral AISA imagery collected over two inland waters
subject to blooms of toxin-producing cyanobacteria. Their
results suggested that the performance of analytically based
algorithms is equal if not superior to that of more widely used
empirical algorithms. Le et al. [24] proposed a semianalytical
four-band algorithm for PC estimation in Lake Taihu using
field-based hyperspectral reflectance measurements. To opti-
mize the position of four bands, they used an iterative
approach and located the first band between 615 and 630 nm,
the second band around 650 nm, and the other two bands
between 660 and 750 nm. Matthews et al. [25] proposed the
maximum peak-height (MPH) algorithm for detecting Chla,
cyanobacteria blooms, surface scum, and floating vegetation in
coastal and inland waters. This baseline subtraction procedure
calculated the height of the prominent peak across the red
and near-infrared medium resolution imaging spectrometer
(MERIS) bands between 664 and 885 nm. Matthews and
Odermatt [26] improved this algorithm for the detection of
cyanobacteria in clear, oligotrophic waters. Wynne et al. [27]
used a spectral shape (SS) approach that is based on the
reflectance trough at 681 nm (SS (681), with bands located
at 665, 681, and 709 nm), to derive a cyanobacteria index
(CI). The top-of-atmosphere reflectance converted to Rayleigh
surface reflectance (although without removing aerosol scat-
tering) is used in the calculation of CI. Wynne et al. [6] used
this index as a robust estimate of cyanobacteria cell counts
in western Lake Erie, where blooms are primarily composed
of microcystis. The CI approach is based primarily on the
impact of reduced fluorescence yield of cyanobacteria rather
than quantifying PC absorption, but to reduce the issue of
false cyanobacteria bloom detection, SS (665) (with bands
at 620, 665, and 681 nm) is used as an exclusion criterion.
Mishra et al. [11] quantified annual and seasonal Cyano HAB
biomass magnitude in Florida and Ohio (USA) lakes from
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MERIS data using CI and the introduced exclusion criterion
(a multiple shape algorithm).

There are many multispectral optical sensors (e.g., MODIS
aboard the Aqua and Terra satellites and sensors aboard
the current Landsat satellite series) whose spectral configu-
rations cannot capture the distinct PC absorption feature at
620 nm [28]. Although these sensors might obtain Chla optical
features to quantify phytoplankton biomass, this pigment is
prevalent in most phytoplankton species and is not specific to
cyanobacteria [29]. Therefore, these multispectral sensors are
suboptimal for separating waters dominated by cyanobacteria
from those dominated by other phytoplankton species [30].
Kutser et al. [30] suggested that the MERIS band configuration
allows detection of the PC absorption feature that is character-
istic of waters dominated by cyanobacteria and this was con-
firmed by Ruiz-Verdú et al. [31]. Mishra et al. [2] discussed
the effect of Chla in degrading the performance of band-ratio-
based cyanobacteria detection algorithms applied to multispec-
tral sensors. Simis et al. [32] provided insights on the influence
of other phytoplankton pigments (e.g., Chlb, Chlc, and pheo-
phytin) on the estimation of PC, especially at low concentra-
tions, using a band-ratio algorithm with MERIS based on [22].
There are other optically active constituents (OACs) in natural
water bodies, such as chromophoric dissolved organic matter
(CDOM), and inorganic suspended particles, that can also
confound the algorithms due to their overlapping absorption
and/or backscattering spectral signatures with PC spectral
features [33]. Therefore, successful retrieval of PC from the
aforementioned algorithms of multispectral satellites depends
on the PC range of values and presence of other phytoplankton
pigments whose signals either overlap with PC or are not well
captured with current multispectral sensors.

The increasingly available aquatic remote sensing missions
with enhanced spectral capabilities encourage the develop-
ment of novel approaches to estimate water quality parame-
ters such as PC. Missions include the current PRecursore
IperSpettrale della Missione Applicativa (PRISMA) hyper-
spectral mission and the upcoming Environmental Mapping
and Analysis Program (EnMAP), Plankton, Aerosol, Cloud,
ocean Ecosystem (PACE), FLuorescence Explorer (FLEX),
and surface biology and geology (SBG) satellites [34]–[37].
Hyperspectral data facilitate the analysis of a reflectance
curve obtained in the visible and near-infrared (VNIR) in
aquatic applications. This spectral curve contains valuable
information on the concentration and composition of water
constituents [38], [39] and can be used to enhance the retrieval
of PC through differentiating its spectral signature from other
OACs in optically complex waters. By employing suitable
techniques, hyperspectral data can capture the discriminative
optical features of PC pigments in detail and be used for
quantitative mapping of cyanobacteria during bloom con-
ditions [30]. Hyperspectral data, with the detailed spatial
and spectral resolutions, and frequent temporal coverage, can
complement conventional remote sensing observations [40].
Extending the use of hyperspectral datasets in monitoring
different variables requires employing techniques that are
able to address their collinearity and data redundancy [41].
Different parametric and nonparametric approaches have been

tested in the literature to retrieve OACs using hyperspectral
remote sensing observations. Popular parametric regression
methods, such as partial least-squares regression (PLSR), have
demonstrated adequate results for estimating OACs, such as
Chla from hyperspectral data in Long Bay, SC, USA [42].
Ryan and Ali [42] used PLSR to identify spectral bands
that are more sensitive to Chla compared with other OACs.
The iterative stepwise elimination PLS (ISE-PLS), which is
a combination of PLS and a wavelength selection function,
outperformed other empirical and semianalytical approaches
used in [43] to estimate Chla from aquatic reflectance in the
Seto Inland Sea, Japan. Machine-learning (ML) and nonlinear
regression algorithms have also been used in the remote sens-
ing of water quality. Nonparametric ML techniques, such as
support vector regression (SVR), have been shown to capture
the complex relationship between radiometric and in situ water
quality data. Sun et al. [5] employed SVR to estimate PC from
hyperspectral data collected in large cyanobacteria-dominated,
turbid lakes in China. Pyo et al. [44] applied SVR, as well
as a feed-forward artificial neural network (ANN), to the
hyperspectral data collected from the Baekje reservoir located
at the Geum River in South Korea to achieve atmospheric
correction and retrieve PC and Chla. Pahlevan et al. [45]
introduced a mixture density network (MDN) to estimate
Chla across different bio-optical regimes in inland and coastal
waters. The algorithm was applied to an in situ hyperspectral
radiometric dataset resampled to Sentinel-2’s MultiSpectral
Instrument (MSI) and the Sentinel-3 Ocean and Land Color
Instrument (OLCI) bands. The MDN algorithm was also
adapted to retrieve hyperspectral phytoplankton absorption
properties and implemented on images of the Hyperspec-
tral Imager for the Coastal Ocean (HICO) [46]. Decision
tree-based ML algorithms such as eXtreme Gradient Boost-
ing (XGBoost) have also gained popularity in the remote
sensing community. Ghatkar et al. [47] developed an XGBoost
model for bloom onset detection and classification of its
species in the Arabian Sea and Bay of Bengal waters using
MODIS-Aqua data.

The primary objective of this study is to assess the impact
of spectral resolution on PC estimation by employing various
ML regression techniques. Heritage, existing, and planned
hyperspectral and multispectral satellite missions are used to
quantify their advantages and limitations as a function of
spectral resolution for PC mapping. The aspects of spectral
resolution under investigation include band spacing, width,
and spectrum coverage. Paired field-measured PC and hyper-
spectral reflectance data were utilized to train and test selected
ML models whose performances were compared against those
of benchmark empirical methods. For this study, HICO and
PRISMA spectral band configurations, with full-width at half-
maximum (FWHM) of <6 nm [48] and ≤10 nm [49], respec-
tively, represent our hyperspectral data. The spectral band
settings of OLCI, MSI, operational land imager (OLI), and
the proposed science measurement requirements for the future
Landsat Next instrument and mission (referred to as LNext
hereinafter) are the multispectral datasets. In the following
sections, we provide: 1) a description of the bio-optical
and limnological data collected at the study sites; 2) the



5515520 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

development and evaluation of the performance of several
ML algorithms to estimate PC from hyperspectral data resam-
pled to HICO spectral bands; 3) an application of the top-
performing ML algorithm to simulated PRISMA, OLCI, MSI,
OLI, and LNext reflectance data to quantify the performance
loss due to the reduced spectral capability; and 4) a comparison
of the performance of selected state-of-the-art PC algorithms
against the top-performing ML algorithm. The performance
assessments among different band configurations and algo-
rithms are discussed based on a subset of optical water types
(OWTs), following [50] and [51].

II. METHODS AND DATASETS

A. Study Sites

For this study, field-based measurements of hyperspectral
aquatic reflectance, PC, and Chla were compiled for a number
of inland waters: Fremont Lakes, Indiana reservoirs, Lake Erie,
South African reservoirs, Spain lakes, and Dutch lakes. The
Fremont Lakes are located in the Fremont State Lakes Recre-
ational Area, about 4.82-km west of Fremont, Nebraska,
USA. The highly variable biogeochemical conditions found
in the Fremont Lakes are typical of many turbid productive
inland, estuarine, and coastal waters. This makes these lakes
ideal candidates for the development of remote sensing algo-
rithms to estimate PC in optically complex waters. Detailed
information on the Fremont Lakes can be found in [52]
and [53]. The second set of inland waters are three central
Indiana (USA) reservoirs: Eagle Creek Reservoir (39◦51� N,
86◦18.3� W), Geist Reservoir (39◦55� N, 85◦56.7� W), and
Morse Reservoir (40◦6.4� N, 86◦2.3� W). These are selected
because of their importance in supplying drinking water to
residents surrounding the Indianapolis metropolitan area and
their severe eutrophication that results in toxic cyanobacteria
blooms. More information about this data can be found in [54]
and [55]. The third study site, Lake Erie, has persistent
degraded water quality because of recurring algal blooms. It is
the shallowest and most biologically productive amongst the
North American Laurentian Great Lakes. The Great Lakes
Water Quality Agreement led to binational efforts to reduce
the phosphorus loadings into the lake in order to reduce
phytoplankton biomass. However, a reduction of phosphorus
has not occurred and Cyano HABs are still a persistent annual
event, especially across the western basin [13]. The fourth
set of inland waters are Loskop Dam (25◦ 25.07� S, 29◦
21.53� E), Hartbeespoort Dam (25◦ 44.38� S, 27◦ 51.55� E),
and Theewaterskloof Dam (34◦ 4.68� S, 19◦ 17.35� E); three
reservoirs selected to capture the diverse bloom conditions in
South African inland waters. Further details on these reservoirs
can be found in [54] and [55]. The fifth study region includes
62 Spanish lakes and reservoirs distributed throughout the
country, representing a large variety of trophic states and envi-
ronmental conditions. More information about these study sites
can be found in [31] and [32]. Finally, the sixth set of inland
waters are Lake Loosdrecht (52◦ 11.7� N, 5◦ 3.1� E) and Lake
IJsselmeer (52◦45� N, 5◦20� E) located in the Netherlands.
Lake Loosdrecht, which originated from peat excavation, is a
well-mixed, eutrophic, and turbid lake. Lake IJsselmeer is the

largest lake in the Netherlands with an area of 1190 km2

and a mean depth of 4.4 m. The water column in the lake
is usually fully mixed but surface scums of cyanobacteria
occur. Physical and biological characteristics of these lakes
are described in [22] and [58]. More information about the
field-based data collection methods as well as paired field-
based PC, Chla, and radiometric data (N = 905) collected in
these study regions is provided below.

B. Field-Based Measurements of PC and Chlorophyll-a

In the Fremont Lakes, water samples were collected at each
station with 1-L amber High Density Poly Ethylene (HDPE)
bottles at a depth of 0.5 m and stored iced in the dark.
Sample filtration was started on the same day of collection
and used 25-mm GF/C filters to collect sufficient volumes of
phytoplankton particles in conditions with low-to-moderate PC
concentrations. These filters retained the relatively large-sized
cyanobacteria typically found in inland waters effectively
and made it possible to filter volumes of 150–500 mL of
water at the same time. The filters were immediately frozen
and shipped to two different laboratories on dry ice for
the analysis of PC at the end of the field season. PC was
extracted through repeated homogenization in a 50-mM phos-
phate buffer [59], [60], as detailed for the water samples
from the central Indiana reservoirs, for a small selection of
samples and through homogenization in a lysozyme reaction
mixture [61], [62] for most of the samples. The extracts were
centrifuged to clarify the samples and the supernatants were
analyzed using a TD700-fluorometer or 10AU-fluorometer
(Turner Designs, Inc.) depending on the laboratory. The Fre-
mont Lakes water samples were additionally filtered through
47-mm GF/F filters and analyzed fluorometrically after extrac-
tion in ethanol [63], [64] as described in [52].

Water samples from the central Indiana reservoirs were
collected using 1-L amber HDPE bottles, temporarily stored
in cold and dark coolers, and filtered and frozen immediately
after being transported to the laboratory before measuring
PC. The measurement of PC was performed using a homog-
enization method with a tissue grinder [59], [60]. Samples
were filtered through 0.7-μm pore size glass fiber filters
(Millipore APFF). The filters were then transferred to 50-mL
polycarbonate centrifuge tubes, broken up in 50-mM sodium
phosphate buffer (pH 7.0 + 0.2) using a stainless-steel spatula,
and subjected to two rounds of grinding and centrifuging.
PC of the upper supernatant was measured using a TD700-
fluorometer (Turner Designs, Inc.) which had been calibrated
against PC solutions made with a Sigma-Aldrich P6161 PC
standard.

Surface samples (at approximately 0.75 m) were collected
from Lake Erie using a Niskin bottle sampler (General
Oceanic’s Model 1010) from eight monitoring sites established
by NOAA’s Great Lakes Environmental Research Laboratory
(GLERL). Samples were stored in the dark and transported to
GLERL. Upon arrival, aliquots were filtered in the dark using
47-mm GF/F filters and immediately frozen at −20 ◦C; vol-
umes ranged between 50 and 400 mL. Within 24 h of collec-
tion, Chla was extracted using N, N-dimethylformamide [65]
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and measured on a 10AU-fluorometer (Turner Designs, Inc.).
PC analysis begun 24 h after collection and was extracted the
following protocols established in [66]. Briefly, filters were
placed in a phosphate buffer and subjected to a freeze-thaw
cycle and then stored at −20 ◦C for at least 16 h. The following
day, the samples were sonicated (Fisher FS110H) at 10 ◦C
for 20 min and subsequently placed in the dark at 5 ◦C for
at least 12 h. The next day, the samples were centrifuged at
4700 r/min for 20 min at 7 ◦C and brought to room temperature
prior to conducting a reading using an Aquafluor (Turner
Designs, Inc).

Part of water samples in Lake Erie were collected
and processed by Environment and Climate Change
Canada (ECCC) survey cruises. Water samples at each station
were taken from the surface using a horizontal Van Dorn
sampler and filtered on the same day of collection. For PC,
400 mL was filtered onto 47-mm GF/C filters and immediately
frozen at −80 ◦C. In the lab, PC was analyzed according
to methods described in [59]. Briefly, PC was extracted in a
phosphate buffer at −4 ◦C for 24 h and subsequently placed at
+4 ◦C for another 24 h. The extract was centrifuged to remove
filter and cell debris and then the supernatant absorbance
was measured spectrophotometrically at 455, 564, 592, and
750 nm using potassium phosphate buffer as a blank. The
absorbance values were scatter-corrected by subtracting the
absorbance at 750 nm. The surface water samples filtered onto
47-mm GF/C filters were also analyzed for Chla, determined
spectrophotometrically after extraction in acetone according
to the methods of the National Laboratory for Environmental
Testing [67].

Water samples in South African reservoirs were collected
from the surface using 1- or 5-L opaque plastic contain-
ers. Samples were filtered through Whatman GF/F filters
at low pressure on the same day of collection and Chla
was measured spectrophotometrically using a 90% boiling
ethanol as the extraction solution, following methods in [68].
A combination of freeze-thaw and enzymatic degradation was
used for PC extraction. PC measurements were performed
spectrophotometrically based on [69]. Further details on steps
for PC extraction and measurements are described in [57] and
references therein.

For lakes in Spain and the Netherlands, water samples were
taken from the surface in shallow, turbid lakes, and from
the first optical depth layer in vertically stratified lakes [32].
Chla samples were extracted with acetone and measured using
gradient high-performance liquid chromatography (HPLC) fol-
lowing the protocols in [70]. Two PC extraction methods were
used, including freeze-thaw based on [59] and mechanical
grinding [71]. Following PC extraction, the concentrations
were calculated spectrophotometrically based on [69]. More
details can be found in [22] and [32].

The log distribution of PC data collected from each
study site as well as the log distribution of data from all
sites are shown in Fig. 1 (top). The histogram of all PC
data collected from all sites nearly follows a log-normal
distribution, with an overall mean and standard deviation
of 58.58 and 124.11 mg/m3, respectively. The frequency distri-
bution and statistics of colocated Chla and PC measurements

are illustrated in Fig. 1 (middle). The bottom plots in Fig. 1
show the log distribution of PC to Chla ratio (PC:Chla). This
ratio indicates the presence and abundance of cyanobacteria
relative to total phytoplankton biomass [22]. Cyanobacteria
is dominant when PC:Chla ≥ 1. PC and Chla pigments are
strongly correlated. Therefore, the performance of PC retrieval
algorithms is assessed based on this ratio in Section III-C2.

C. In Situ Radiometry Measurements

The remote sensing reflectance, Rrs, is computed as the
upwelling radiance emerging from the water column, Lw ,
divided by the total incident downwelling irradiance, Ed (0+),
just above the water [72] according to (1). The depth depen-
dency of Lw has been dropped as it is defined only at the
upper side of the air–water interface [73] and the wavelength
dependencies have been dropped for brevity

Rrs = Lw

Ed(0+)
. (1)

The in situ measurements of Rrs in the Fremont Lakes
followed the method of [74]. There, a pair of intercali-
brated Ocean Optics USB2000 UV-NIR spectrometers (Ocean
Insight, Orlando, FL, USA) was employed to measure
upwelling radiance below the water surface, Lu(0−), and
Ed(0+), acquiring hyperspectral measurements from 400 to
900 nm at less than 1-nm intervals at the same time. The mea-
surements from the two spectrometers were related through
calibration scans of a white Spectralon reflectance target
(Labsphere, Inc., North Sutton, NH, USA) at the start of each
set of measurements and the upward radiance transmittance
of the water surface was accounted based on the relationship
Lw = tLu(0−)n−2 [73] under the assumption of a constant
upward Fresnel transmittance of the air–water interface, t ,
of ∼0.975 [73] and a water temperature and wavelength
specific refractive index of water, n, [75] to calculate Rrs [52].

This closely resembled the measurements in the three cen-
tral Indiana reservoirs where dual Ocean Optics USB4000 UV-
NIR spectrometers (Ocean Insight) were used to measure
underwater remote sensing reflectance, rrs, in 2010 from
350 to 900 nm at 1-nm intervals. The measurement steps are
described in [54] and [55]. Briefly, an optical fiber equipped
with a cosine collector, attached to a first spectrometer, was
mounted on a 2-m-high pole and pointed upward to measure
the real-time incident Ed(0+). Simultaneously, a 25◦ field-
of-view optical fiber, attached to a second radiometer, was
dipped ∼2 cm below the water surface via a 2-m-long pole
to measure Lu(0−) at nadir. The measurements from the
two spectrometers were related through calibration scans of
a gray Spectralon reflectance target (Labsphere, Inc) and the
in situ spectra were processed in the laboratory to a pseudo
underwater remote sensing reflectance, r �

rs, using the CALMIT
Data Acquisition Program software (CDAP; University of
Nebraska at Lincoln)

r �
rs = Lu(0−)

Ed(0+)
. (2)

Furthermore, rrs, is defined as Lu(0−) divided by the total
downwelling irradiance just beneath the water surface, Ed (0−),
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Fig. 1. Log distribution of (Top) PC, and (Middle) Chla concentrations and (Bottom) PC: Chla for each study site and all data combined. Statistics of PC
(mg/m3), Chla, (mg/m3), and PC:Chla in each dataset, including average (Avg.), standard deviation (St.D.), and median (Med.), are also shown. Red bars
in bottom plots show cyanobacteria-dominated samples (PC:Chla ≥ 1). (a) Fermont lakes. (b) Indiana reservoir. (c) Lake Erie. (d) South African reservoir.
(e) Spanish lakes. (f) Dutch lakes. (g) All data.

and can be computed from as below, if the assumption of
Ed(0−) = 0.965Ed(0+) [76] is made

rrs = r �
rs

0.965
. (3)

Applying this transmittance factor is expected to introduce
uncertainty as it only valid for the conditions as encountered
on a number of oceanic cruises [76] and any corrective factor
would have to account for the measurement geometry and light
conditions encountered at the time of field data collection.

NOAA-GLERL measures surface water Rrs in Lake Erie
during the weekly field sampling efforts, with a Satlantic
Hypergun with radiance values at 137 channels (350–800 nm).

The Hypergun measures upwelling radiance (Lu) at 150◦
relative to the solar azimuth [72], then at 40◦ from nadir at
the water surface for 15 s and shifted 90◦ upward (∼40◦
from zenith) to record sky radiance, Lsky, for 15 s. It is
then positioned at the 18% reflective panel at 40◦ from nadir
for 15 s. The radiance data are radiometrically calibrated
and dark-offset corrected using factory calibration files, with
irradiance (Ed) calculated as the radiance of the panel divided
by the known reflectance of the panel (0.18) and multiplied by
π [72], [73]. Water leaving radiance (Lw) was corrected for
diffuse sky contamination b: Lw = Lu − 0.028 ∗ Lsky [72],
where 0.028 is taken to be the reflectivity of the water
surface. The remote sensing reflectance (Rrs) was calculated
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Fig. 2. Remote sensing reflectance (Rrs) measured at each study sites (colored by the dataset).

as Lw divided by Ed . In the NOAA-GLERL field operations,
the same azimuth angle was always used which was greater
than 90◦ between the sun and the sensor. Using a fixed
bidirectional reflectance distribution function (BRDF) at this
angle introduces only a 1%–2% potential error [77].

The in situ radiometric measurements made in Lake Erie by
ECCC followed the method of [78]. Briefly, a Hyperspectral
Profiler II (Seabird Scientific) was deployed to measure water
column profiles of upwelling radiance, Lu(z), and down-
welling irradiance, Ed (z), providing full spectrum observations
from 398.9 to 803.5 nm at ∼3.3-nm intervals. Rrs was calcu-
lated after extrapolating Lu(z) and Ed(z) to the surface and
correcting for interactions at the air–water interface (z denotes
the depth dependency in the acronyms). The cross-surface
radiance transmittance [Lw/Lu(0−)] was assumed constant at
0.54 following [79].

The Rrs spectra in South African Reservoirs followed the
protocols outlined in [73]. Briefly, an ASD FieldSpec spec-
troradiometer (ASD Inc., Boulder, CO) was used to measure
radiance spectra ten times in sequence for a Spectralon target,
sky, and water, from 350 to 999 nm at 1-nm intervals. The
mean of radiance spectra was then calculated for each water
target and Rrs was calculated based on equations provided
in [72].

For the Spanish and Dutch lakes, an ASD-FR and a PR-650
were used to measure Lw(0+) and Ed (0+), respectively. For
these lakes, Rrs spectra were calculated three times and the
final spectra were retrieved from averaging all measurements,
after removing any invalid observations. Measurements in
Spanish and Dutch lakes were from 400 to 905 and 380 to
780 nm with 1- and 3–4-nm intervals, respectively. Details of
the way measurements were done in each region, including the
optical configurations and instrument characteristics, which are
summarized in [32].

A data quality screening was carried out through visual
inspections of Rrs data from all study regions. Outliers
exhibiting abnormal spectral features, inconsistent with known

spectral properties of water constituents, were excluded. The
spectral resolution (and range) of Rrs data were different,
at 1 nm (400–900 nm), 1 nm (350–900 nm), and 3 nm
(348.42–802.54 nm) for data collected from the Fremont
Lakes, Indiana Reservoirs, and Lake Erie, respectively. The
Rrs data were convolved with the relative spectral responses
of HICO and PRISMA to simulate their band-equivalent Rrs

for hyperspectral analysis in ML models (Section III-C).
Because of the finer spectral sampling of HICO across the
VNIR, we refer to HICO-simulated Rrs as hyperspectral Rrs

throughout unless otherwise noted (Sections III-A and III-B).
Although HICO and PRISMA bands are within the range
of 400–900 nm [48] and 400–2500 nm [49], respectively, there
were no radiometric measurements beyond 802.54 nm in Lake
Erie. Therefore, we considered a spectral range from 400 to
800 nm, common to all Rrs datasets (Fig. 2). Also, the original
radiometric data were convolved with the relative spectral
response of OLCI, MSI, OLI, and LNext to simulate band-
equivalent Rrs for algorithm training and testing pertaining to
multispectral data. The OLCI band at 400 nm was excluded
due to inadequate radiometric coverage <400 nm in the
Fremont Lakes data.

D. OWTs

In order to analyze algorithm performance over a range of
OWTs, the typology developed in [50] and modified in [51]
was used. Spyrakos et al. [50] collected a comprehensive
dataset from more than 250 aquatic ecosystems, including
inland waters and coastal areas, representing a wide range
of optical conditions. The authors applied a functional data
analysis smoothing method and k-means clustering approach
on this data (N = 4045) to develop a typology of OWTs
for natural waters. They identified 21 distinct OWTs when
applying the k-means classification algorithm on inland and
coastal waters. Pahlevan et al. [51] reduced the identi-
fied OWTs in [50] into seven types, to cover both the
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Fig. 3. Correlation matrix in hyperspectral data (not all HICO bands are
labeled, due to limitation in figure size).

continuum of various OWTs encountered in aquatic environ-
ments and avoid under-representing OWTs in their matchup
dataset.

To assign an HICO-like Rrs spectrum to one of the pre-
defined OWTs, the Rrs values were first standardized by
dividing it to the area under the curve. The area was cal-
culated using numerical integration from 400 to 780 nm.
This standardization approach can preserve the shape of the
spectral curve across the different parts of the spectrum [80]
as used in [50]. After standardization, applying the L2 norm
(Euclidean) distance, the similarity of each spectrum to the
associated spectrum for each OWT in [50] was calculated.
Each spectrum was assigned to OWT with the closest distance.

E. ML Algorithms

Vandermeulen et al. [81] show that a continuous spec-
trum with 5–7-nm spectral sampling frequency is optimal
to resolve the shape of peaks and valleys in Rrs for ocean
color applications. The hyperspectral data in their study were
collected from multiple sources to represent different optical
features ranging from turbid freshwater and coastal waters
to blue and oligotrophic waters. However, there is a strong
correlation between observations at neighboring wavelengths
in hyperspectral data (e.g., Fig. 3; correlation among HICO-
resampled Rrs bands in this study, with ∼5.7-nm spectral
resolution). Lee et al. [82] and Wolanin et al. [83] discussed
the correlation in hyperspectral data and their first- and
second-order derivatives using extensive and inclusive data
measured and synthesized, respectively, to represent various
aquatic environments. Therefore, employment of hyperspectral
data for extracting OACs including PC requires techniques that
can address their collinearity and high dimensionality.

Four ML regression approaches were tested in this study
to retrieve PC from HICO bands: partial least squares
(PLS), SVR, XGBoost, and multilayer perceptron (MLP).
All the ML algorithms were adopted from Python package
scikit-learn [84].

1) Overview of Selected Algorithms: PLSR: PLSR is an
iterative statistical technique developed by Wold [85]. It was
included in this study as a parametric regression algorithm due
to its increasing popularity in remote sensing studies. Similar

to principal component regression (PCR), PLSR models a
response variable using new predictor variables (known as
components), when there are a large number of predictors
that are highly correlated or collinear. A terminating rule
is employed to identify the optimal number of components.
But, unlike PCR, PLSR considers the response variable when
creating the components to explain the observed variability
in the predictor variables [86]. This will often lead to the
development of models that are able to fit the response variable
with a fewer number of components [43], [87]. For the reasons
summarized in [87], there are a few recognized advantages for
PLSR over PCR. PLSR is considered as one of the staples of
modern chemometrics [88]. This algorithm is a generalization
of a multiple linear regression (MLR) approach that, unlike
MLR, enables the analysis of data with numerous strongly
collinear and noisy predictor variables. In situations where
the input features have large dimensionality and are collinear,
MLR can often overfit, which commonly occurs when apply-
ing regressing techniques to hyperspectral data. PLSR offers
feature selection procedures to overcome the overfitting
problem [89]–[91].

Robertson et al. [92] tested the performance of PLS for
estimating cyanobacterial pigments in eutrophic inland waters,
and PLS was later jointly used with genetic algorithm (GA) to
quantify Chla and PC with in situ measured spectra [93], [94]
leading to improved accuracies compared with three band
models particularly for estimating Chla [95]. PLS was also
coupled with ANN to model possible nonlinear relationships
between cyanobacterial pigments Chla and PC and spectral
reflectance [96], [97].

SVR: Cortes and Vapnik [98] first identified support vector
machines (SVMs). In the context of SVM, SVR was presented
by Drucker et al. [99]. This ML algorithm is popular in remote
sensing studies to robustly capture the nonlinear trends in
data. SVR relies on kernel functions and thus is considered
as a nonparametric approach. The kernel functions, such as
the linear, polynomial, sigmoid, and radial basis functions
(RBFs), are used to transform the nonlinear regression in the
original feature space into a linear regression. Kwiatkowska
and Fargion [100] used SVR to cross-calibrate two satellite
ocean color sensors (MODIS and SeaWiFS). The objective of
the research was to eliminate the inconsistencies between the
corresponding data products and produce merged daily global
ocean color coverage. Ruescas et al. [101] tested five different
ML algorithms including SVR for the retrieval of colored
dissolved organic matter from simulated MSI- and OLCI-Rrs

data.
XGBoost: The XGBoost algorithm was proposed by Chen

and He [102]. This algorithm is nonparametric and is a
tree-based ensemble algorithm. It originates from the idea
of “boosting” by integrating predictions from “weak” learn-
ers to develop a “strong” learner via an additive training
process [103]. The XGBoost algorithm aims to reduce com-
putational time and avoid the overfitting issue by introducing
regularization parameters. The collinearity of input features
does not affect the accuracy and prediction performance of
the model. Cao et al. [104] employed XGBoost to retrieve
Chla from OLI in eight turbid lakes in eastern China.
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TABLE II

AVERAGE SPECTRAL SAMPLING AND NUMBER OF BANDS,
WITHIN 400–780-nm RANGE, FOR THE SIMULATED

SPECTRA IN DIFFERENT SENSORS

MLP: MLP is one of the widely used ANN architectures
which is investigated in this study as a parametric algo-
rithm. It is a feed-forward ANN for approximating nonlinear
regressions in a supervised learning technique, called back-
propagation, for training the model parameters. The MLP
model consists of at least three layers including the input,
hidden, and output layers. The training process of the ANN
models depends on the reduction of a loss function that is
calculated based on the error between predicted and true
values. The decline in the loss function follows an opti-
mization algorithm with a learning rate. The learning rate
controls the rate of change in the model (updating model
parameters, weights and biases, in each layer) in response to
the estimated error in the loss function. For further details
on this algorithm and its parameters, hyperparameters refer
to [105]. Schiller and Doerffer [106] developed an ANN as an
approach to parameterize the inversion of a radiative transfer
model. The study objective was to derive the concentrations
of phytoplankton pigments, suspended matter and CDOM,
as well as the aerosol path radiance from MERIS Rayleigh-
corrected top-of-atmosphere reflectance spectra over turbid
coastal waters. ANN has been extensively used in different
studies for estimating water quality parameters from remote
sensing observations [45], [107]–[110].

2) Input and Output Features: Input to all four ML algo-
rithms consists solely of HICO-simulated hyperspectral bands.
The best performing ML algorithm was then selected for test-
ing on PRISMA-, OLCI-, MSI-, OLI-, and LNext-simulated
Rrs. Table II summarizes the spectral sampling and the number
of bands in each sensor that were used as input features in
the best performing ML algorithm. The spectral sampling and
number of bands are calculated for the spectral region captured
in all study sites (400–780 nm). The panchromatic band in
OLI was also included [111]. All input features are normalized
using median centering and interquartile range (IQR) scaling
which is robust to outliers. The output variable, PC, is first
log-transformed and then scaled to the range of (0, 1).

3) Hyperparameter Tuning: A data split of 80/20 for train-
ing and testing ML algorithms resulted in a total of 724 ran-
domly selected pairs of colocated Rrs and PC measurements
for training and validating the algorithms and tuning hyperpa-
rameters in a fivefold cross validation, leaving the rest of the
data for testing (N = 181). Other data splits (70/30, 60/40, and
50/50) were also investigated for training and testing the ML
algorithms using HICO dataset. The cross validation approach
was used to avoid overfitting and to ensure that the training

dataset is randomly distributed in different segments and the
model performance was not significantly influenced by the size
and distribution of training datasets [90]. The tuning procedure
for each ML model is described below.

PLSR: The parameter tuning procedure in the PLS model
aims to optimize the number of components (n_components)
and find a subset of input bands that can produce the lowest
median symmetric accuracy (MdSA; see (4)) in a fivefold
cross validation. A stepwise feature selection method was
applied in this study to simultaneously find the optimal
n_components and the subset of bands. The maximum value
of n_components (n_max) for PLSR applied on hyperspectral
data was set to 40, and for the multispectral missions (in case
this model was the best performer), it was set to the number of
bands in each (44, 14, 6, 5, and 9 for PRISMA, OLCI, MSI,
OLI, and LNext, respectively). The principle of selection was
to first develop a PLSR model with a selected n_components
smaller than n_max value. Then, the input bands were sorted
based on the importance metric derived from the developed
PLSR model. The PLSR importance metric for each band
was calculated as its weighted absolute value of the PLSR
coefficient, where the weight [W ; (2)] corresponds to the
fraction of the standard deviation of the respective band to the
total standard deviation of all bands. In the next step, PLSR
models with the previously selected n_components were fit to
different subsets of HICO bands, where in each run, a band
with the lowest importance metric was discarded until the
number of bands remaining was equal to the n_components.
This approach was repeated for all different n_components
values lower than n_max. The n_components and subset of
bands that produced the lowest MdSA were selected as the
optimal combination of parameters to develop the final PLSR
model using all training data

Wi = St Devi

�i St Devi
, where i is i-th band. (4)

SVR: A grid-search approach was utilized to find the kernel
function and optimize the values for the penalty coefficient
(C) and kernel parameter (gamma). RBF was selected as the
kernel type. The C value minimizes the regularization error,
and gamma defines the curvature in the RBF kernel. Values
of C and gamma can affect the prediction skill of an SVR
model [112]–[114]. These values for C and gamma were
selected between (1, 10, 100) and (0.01, 0.1, 1), respectively.
The combination of hyperparameters that produced the lowest
MdSA in a fivefold cross validation was employed to develop
the final SVR model using all training data.

XGBoost: To determine the structure of the XGBoost model,
six hyperparameters including, alpha, gamma, the number of
trees (n_estimator), maximum tree depth (max_depth), fraction
of samples to randomly subsample at each step of training
(subsamples), and fraction of features to be used randomly
for each training step (colsample_bytree) were tuned in a
grid-search strategy. The regularization parameters (alpha and
gamma) were used to help reduce the model complexity and
improve the performance. These two hyperparameters were
selected between (1e-3, 0.01, 0.1, 1, 10, 100, 1000). The
number of trees was within the range of (1, 20) with a
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TABLE III

SELECTED STATE-OF-THE-ART ALGORITHMS FOR PREDICTING
PC FROM Rrs , WITH COEFFICIENTS TUNED TO THE FREMONT,

INDIANA, AND ERIE COMBINED DATASETS

step size of 1. Other model parameters including max_depth,
subsamples, and colsample_bytree were selected from 1 to
10, (0.7, 0.8, 0.9), and (0.7, 0.8), respectively. A fivefold cross
validation approach was applied to the training dataset to deter-
mine the MdSA values. The combination of hyperparameters
that produced the lowest MdSA was selected to develop the
final XGBoost model using all training data.

MLP: The hyperparameter tuning approach in the MLP
model was performed using a grid-search strategy to find
the optimal values for the activation function, the number
of hidden layers and nodes in each layer, the optimization
algorithm, the learning rate, and the regularization term. The
activation functions tested were rectified linear units (ReLUs),
hyperbolic tangent (tanh), logistic, and identity functions.
The optimal number of hidden layers tested was a maxi-
mum of three with no more than ten (even numbers in this
range were tested) nodes in each. The optimization algorithm
was selected among the limited Broyden–Fletcher–Goldfarb–
Shanno (LBFGS) algorithm [115], stochastic gradient descent
(SGD) [116], and Adam [117] optimization solver. The learn-
ing rate was adjusted according to three strategies of constant,
inverse scaling (invscaling), and adaptive. The regularization
term (alpha) was selected between (1e-3, 0.01, 0.1, 1, 10, 100,
1000). Similar to the other methods, a fivefold cross validation
approach was applied to the training dataset in a grid-search
strategy to calculate the MdSA values. The combination of
hyperparameters that produced the lowest MdSA was used to
develop the final MLP model using all training dataset.

F. State-of-the-Art PC Algorithms

The precision and accuracy of PC retrievals using the
ML models applied to hyperspectral data were compared
with those from well-validated state-of-the-art Rrs centered
algorithms reviewed in [17], such as [2], [23], [118], and [119]
(Table III). Simis et al. [22] also developed a band-ratio
algorithm. However, since inherent optical properties (IOPs)
such as absorption data were required to optimize the algo-
rithm parameters, this approach was not included in the
list of benchmark algorithms in this study. The band-ratio
regressions target the PC absorption feature in the Rrs spectra
between 600 and 625 nm. For the implementation of these
algorithms, the closest HICO bands in the in situ Rrs spectra

Fig. 4. Average of spectra in each OWT.

to the algorithm index were supplied, i.e., no attempt was
made to recalibrate the algorithms’ spectral indices. However,
the algorithm coefficient and intercept were locally retuned
using the training dataset in this study.

G. Performance Indicators

The performance of different approaches in estimating PC
from hyperspectral and multispectral datasets was examined
using both linear mean absolute percentage error (MAPE)
and log-transformed metrics. The performance assessment is
also reported based on the OWTs found in the dataset (in
Section II-D). The evaluation metrics were calculated using
the field-based testing dataset (N = 181, in the 80/20 split),
which is independent of the training set (N = 724, in the
80/20 split). Calculations of the metrics are carried out using
the estimated PC (E) against the field-measured data (M).
These metrics include

SSPB = 100sign(z)(10|z| − 1)[%]
where z = Median

(
log10

(
E

M

))
(5)

MdSA = 100(10y − 1)[%]
where y = Median

∣∣∣∣log10

(
E

M

)∣∣∣∣ (6)

MSA = 100(10y − 1)[%]
where y = Mean

∣∣∣∣log10

(
E

M

)∣∣∣∣ (7)

RMSLE =
[∑N

i=1(log10(Ei ) − log10(Mi ))
2

n

]1/2

(8)

MAPE = 1

n

N∑
i=1

∣∣∣∣ Mi − Ei

Mi

∣∣∣∣ (9)

where SSPB is the symmetric signed percentage bias, MdSA
is the median symmetric accuracy (which was used to tune ML
hyperparameters), and MSA is the mean symmetric accuracy.
These metrics are symmetric and resistant to outliers [120].
SSPB, MdSA, and MSA are the key metrics to compare
the results from different band configurations and algorithms.
RMSLE is the root mean square log error. The slope associates
with the linear regression fit between estimated and measured
PC. Slope and MAPE are included to facilitate comparisons
with the previously published results.
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Fig. 5. Distribution of Rrs in each OWT. Mean and all Rrs are, respectively, shown in black solid line and dashed lines (colored by the study site) in each
OWT. The nonstandardized HICO Rrs values are shown in this figure.

TABLE IV

PERCENTAGES OF EACH DATASET REPRESENTATIVE OF EACH OWT

III. RESULTS

A. OWTs

The assignment of the spectra to one of the 21 OWTs in [50]
led to only 13 clusters in our dataset, where two of them had
less than four members. Therefore, as suggested in [51], only a
subset of the original OWTs in [50] were considered to provide
a near-uniform distribution of spectra in each OWT and still
cover the continuum of optical conditions in the dataset. This
subset in our study has five clusters. OWTs 1 and 2 delineate
the common spectra found in oligotrophic and/or coastal
waters. OWTs 3 and 4 are found in lakes and coastal estuaries
with increasing phytoplankton bloom densities and turbidity
associated with detrital matter. OWT5 represents waters high
in sediment. Fig. 4 compares the shape and magnitude of the
calculated average of spectra in each OWT.

Fig. 5 and Table IV summarize the distributions of Rrs

assembled from all study sites in each OWT (N = 905 for
paired field-based radiometric and PC data in all sites). A large
portion of spectra in this study were assigned to OWT4 with
478 spectral curves. Most of the spectra in the Fremont Lakes
and Indiana Reservoirs represent OWT4 (∼68% and ∼89%,
respectively). Only Lake Erie spectra represent OWT1 and are
distributed in all OWTs, mainly in OWTs 2 and 3 (∼43% and
∼23%, respectively). There are no spectra from Indiana and
South African Reservoirs in OWT2.

Fig. 6. Ranges of PC and Chla are displayed in log scale for each OWT
in a box and whisker plot. The boxes display the median, and the 25% and
75% quartiles of all data in each OWT. The whiskers are a representation of
1.5 multiplication of an IQR. Points are values outside this range.

Fig. 6 shows the average and range of PC and Chla
values in our dataset per OWT. OWT1 (N = 36) has
the lowest PC and Chla values of 0.51 ± 0.69 and
4.1 ± 2.02 mg/m3, respectively. The highest PC and Chla
were in OWT4 (N = 478) with values of 100.2 ± 150.87 and
67.59 ± 55.14 mg/m3, respectively.

B. Correlation Analysis

To better understand the effects of the optical conditions on
the information that each band may carry with respect to PC,
Fig. 7 shows the correlation of PC with HICO Rrs measured in
each individual band. The correlation analysis was performed
for each OWT separately.

Each OWT shows different individual (or ranges of) HICO
bands selected to have the highest correlation, emphasizing the
impact of other OACs in masking the dual spectral features
of PC around 620 and 650 nm. However, in all OWTs,
there is maximal correlation around the red edge, marking
this region as important in HAB detection (either through
cross correlation of PC and Chla or unique scattering features
of cyanobacteria). In OWT1 (typical in oligotrophic and/or
coastal waters), all spectral regions are almost equally impor-
tant in PC retrieval. In OWT 2, the spectral range > 700 nm
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TABLE V

OVERALL PERFORMANCE ANALYSES OF ML AND BENCHMARK MODELS APPLIED TO HYPERSPECTRAL AND MULTISPECTRAL DATASETS. THE
PERFORMANCE INDICATORS ARE CALCULATED FOR THE TESTING DATASET, TO ENABLE THE PERFORMANCE COMPARISON IN DIFFERENT

SPECTRAL RESOLUTIONS. WHERE ∗, +, AND # MARK THE BEST PERFORMANCE WITHIN EACH OF THE HICO ML, MULTISPECTRAL

MLP, AND BENCHMARK ALGORITHM ASSESSMENTS, RESPECTIVELY

Fig. 7. Pearson correlation of PC with HICO Rrs measured in each individual
band. OLCI, MSI, OLI, and LNext spectral coverages are plotted as a
reference. OLI panchromatic band (503–676 nm) is not shown on the plot.

is the most important in PC retrieval. The highest correlations
in OWTs 3, 4, and 5 were around the PC absorption peak
around 620 nm. The blue region in OWTs 1 (typical in
oligotrophic and/or coastal waters), 4 (typical in eutrophic
waters), and 5 (sediment-rich waters) is contributing more
information for PC retrieval compared with the other two
OWTs. However, in OWTs 1, 3, 4, and 5, the correlations
between PC and Rrs show small variations throughout most of
the visible spectrum. This means that there is possibility for
ambiguity when PC is resolved only through cross-correlations
with the dominant optical features of the spectrum. The
spectral coverage available with each multispectral dataset

Fig. 8. Scatter plots derived from applying different ML models on HICO
bands to retrieve PC (N = 181). Dashed line shows 1:1 relationship. Solid
line shows fit regression for testing data (N = 181).

from OLCI, MSI, OLI, and LNext is plotted in Fig. 7 for
comparison.

C. Performance Evaluation

The parameters of the four ML models were tuned for
HICO, and the parameters of the best performing one were
retuned for PRISMA and the multispectral datasets to assess
the role of spectral sampling in the ML model performance.
Further explanation of model development is provided in
the Appendix. Table V summarizes all the model setups
(scenarios; different models applied to different predictors).
The performance of each model was assessed using the metrics
listed in Section II-G for the test dataset (N = 181).

Fig. 8 illustrates the predicted PC derived from different
ML models applied to HICO-resampled Rrs plotted against
the measured values. As shown in Table V, the MLP model
outperformed others with the lowest SSPB, MdSA, MSA,
RMSLE, and MAPE and the highest slope. SVR performed



ZOLFAGHARI et al.: IMPACT OF SPECTRAL RESOLUTION ON QUANTIFYING CYANOBACTERIA IN LAKES AND RESERVOIRS 5515520

Fig. 9. Scatter plots derived showing the performance of MLPs on other
spectral band settings as labeled. Dashed line shows 1:1 relationship. Solid
line shows fit linear regression to the test data (N = 181).

Fig. 10. Scatter plots illustrating performance of existing band-ratio models
as employed on respective Rrs (λ). Dashed line shows 1:1 relationship. Solid
lines show fit regression for testing data (N = 181).

better than PLSR. XGBoost outperformed PLSR with lower
MdSA, MSA, RMSLE, and MAPE and higher slope. There-
fore, MLP was selected as the best performing ML model to
produce PC from HICO bands.

Note that experiments with other training/validation split
sizes were also performed to find the best performing ML
model when applied to HICO bands. MLP with 80/20 split size
performed the best among all ML models with different split
sizes. Therefore, all scenarios presented here (different ML
models and hyperspectral and multispectral input features) are
the results of employing this split in ML model development.

The performance of MLPs retuned for other band configu-
rations (Table II) is shown in Fig. 9. MLP hyperparameter
tuning results are summarized in the Appendix. Table V
compares the performance of these models in retrieving PC
from PRISMA- and multispectral-simulated reflectance against
the ones derived from HICO bands. The table shows that
between hyperspectral datasets, HICO outperformed PRISMA
with lower SSPB, MSA, RMSLE, and MAPE. MLP-PRISMA
produced a slightly lower MdSA and the slopes were equal in
these two hyperspectral scenarios. The performance of MLP
in PC retrieval degraded from hyperspectral datasets to OLCI,
LNext, MSI, and OLI, respectively, in terms of MdSA, MSA,
and slope. The analysis shows that OLI spectral bands were the
least suitable to calculate PC from applying an MLP model
to this dataset with the highest MdSA, MSA, RMSLE, and
MAPE and the lowest slope.

Using the same dataset, we demonstrate that the ML models
offer major improvements compared with previously published
band-ratio algorithms (Section II-F). The PC values retrieved
from these algorithms are plotted against the field-based
PC measurements in Fig. 10. Table V summarizes their
performance using the statistical indicators in Section II-G.
Results show that S00 performs best in terms of SSPB, MSA,
RMSLE, and slope. However, all band-ratio models performed
poorly in comparison with the MLP models applied to either
HICO, PRISMA, or multispectral spectra (Table V). Higher
values of PC were overestimated by all benchmark models.

Concentrations of Chla and other pigments can modify the PC
absorption and reflectance features. Also, these features can
occur at different wavelengths depending on the variations in
PC and Chla concentrations [2]. However, these factors are not
considered in the development of band-ratio algorithms [2],
which might contribute to the poor performance of these
algorithms compared with the ML models in the current study.
Previous studies in [45], [104], [121], and [122] show the value
of ML models and clearly demonstrate their advantages over
empirical algorithms with hard-coded coefficients. The ML
models tend to be flexible and learn the nonlinear association
between Rrs and IOPs.

1) Performance Evaluation Based on OWTs: The perfor-
mance evaluation in different scenarios was further categorized
based on OWTs.

Fig. 11 shows which water type will benefit the most from
each ML model applied to the HICO-simulated Rrs dataset.
The MLP produced the lowest SSPB, MdSA, and MSA in
OWTs 1, 2, and 4. In OWT3, all ML models performed
almost equally in terms of MdSA (SVR produced marginally
lower MdSA than other models). However, PLSR and MLP
produced the lowest SSPB and MSA in this OWT, respectively.
In OWT5, XGBoost (the lowest SSPB) and MLP (the lowest
MSA) performed closely with equal MdSA.

Fig. 12 compares the performance of MLP models tuned
for hyperspectral against the ones tuned for multispectral
datasets, in different OWTs. Scenario MLP-PRISMA out-
performed others in OWT1. MLP-HICO and MLP-LNext
performed closely in this OWT. OWT1 includes waters with
the lowest values for PC (0.51 ± 0.69 mg/m3) and Chla
(4.1 ± 2.02 mg/m3) in our matchup dataset (Fig. 6).
MLP-HICO produced the lowest SSPB, MdSA, and MSA in
OWT2. MLP-MSI produced the lowest SSPB and MdSA in
OWT3, but MLP-HICO outperformed the rest with the lowest
MSA. MLP applied to hyperspectral data produced the lowest
SSPB, MdSA, and MSA in OWT4. This OWT is assigned
to waters with the highest range of PC and Chla values
(100.2 ± 150.87 and 67.59±55.14 mg/m3, respectively).
In OWT5, with sediment-rich waters, MLP-OLI performed
best with the lowest SSPB, MdSA, and MSA. MLP-LNext
performed the best in OWT1 between multispectral datasets.

2) Performance Evaluation Based on PC:Chla: The perfor-
mances of MLP models applied to hyperspectral and multi-
spectral datasets were compared for different ranges of values
for PC:Chla. Results in Fig. 13 show that the performances
of MLP models applied to hyperspectral data of HICO and
PRISMA were comparable in terms of the lowest SSPB,
MdSA, and MSA, when PC:Chla values are less than one. The
performance of MLP-OLI was consistently lower than that of
other sensors in this range of PC:Chla values. In the pres-
ence of cyanobacteria (PC:Chla ≥ 1), scenario MLP-OLCI
outperformed the rest in terms of SSPB, MdSA, and MSA.
MLP-HICO and MLP-PRISMA produced comparable results
to those of MLP-OLCI when cyanobacteria were dominant.
MLP-OLI performed poorly in comparison with other sensors
in the presence of cyanobacteria.

Kutser et al. [30] declared that MERIS band configuration
(bands 6 and 7) allows detection of PC when it is present in
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Fig. 11. Performance metrics for the four ML models implemented for HICO-resampled Rrs in retrieving PC values in different OWTs.

Fig. 12. Performance metrics for the MLP models implemented for the five datasets of hyperspectral and multispectral Rrs in retrieving PC values in
different OWTs.

Fig. 13. Performance metrics for the MLP models implemented for
hyperspectral and multispectral resampled-Rrs in retrieving PC values in
different range of PC:Chla values.

relatively high concentrations. Metsamaa et al. [15] show that
the cyanobacteria double spectral feature can be detectable
when Chla in the Baltic Sea is at least 8–10 mg/m3. Our
results in Fig. 13 demonstrate that the PC determination
using multispectral data of OLCI can perform best when
cyanobacteria is dominant (PC:Chla ≥ 1), which can happen
even at low concentrations.

IV. DISCUSSION

Remote sensing studies are shifting toward globally
applicable models for retrieving and monitoring spatiotem-
poral distribution of cyanobacteria. However, diversity in
optical conditions, both temporally and spatially, makes this
task challenging. This study confirms that hyperspectral data,
through application of ML algorithms, can be used to estimate
PC when relevant information is extracted from hundreds of
bands. Spectral resolutions of HICO and PRISMA outper-
formed the ones of multispectral sensors to retrieve PC from an
MLP model, when all OWTs were combined. However, results
demonstrated that the best performing spectral resolution and
ML algorithm is different in each OWT.

A. Modeling Algorithm

Between ML models applied to HICO-resampled Rrs data,
MLP outperformed others in retrieving PC for almost all
OWTs. MLP leverages the spectral information in all bands
to be able to recognize the pattern of optical complexity in
each OWT. SVR also takes advantage of the full spectral
information by applying nonlinear kernels and mapping the
features into a higher dimensional space to create linear (or
approximately linear) problems. As Table V demonstrates, this
model performed poorly overall, compared with MLP when
applied to the HICO dataset. Unlike MLP and SVR, PLSR
and XGBoost are developed based on a reduced number of
input features and a subset of spectral bands with the highest
information. As Figs. 16 and 17 show, the three most important
bands selected in PLSR were 461, 467, and 730 nm and
in XGBoost were 501, 713, and 719 nm, respectively, while
other bands contributed less to the model development. PLSR
discarded 50 bands and XGBoost associated an importance
metric less than 0.005–29 bands. However, the reduced feature
space is not necessarily able to capture the optical complexity
of all OWTs. Therefore, the MLP model was selected as the
ML model to capture the nonlinear and complex interaction
between HICO-resampled Rrs and PC. Employing all HICO
spectral bands, the MLP model estimated PC across a broad
spectrum of OWTs. Pyo et al. [123] also utilized an NN as the
regression model to estimate PC from airborne hyperspectral
data for Baekje weir located at Geum River in South Korea.

B. Hyperspectral Versus Multispectral Data

MLP was further tested for estimating PC from PRISMA
and multispectral datasets. As Fig. 7 shows, each OWT has
the highest correlation with HICO-resampled Rrs at a specific
wavelength (or equally high correlations in a range of the
spectrum) that is not necessarily covered by the multispectral
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Fig. 14. Learning curves for MLP models applied to hyperspectral and
multispectral datasets.

bands. For example, the highest correlation between Rrs and
PC occurs at wavelengths >700 nm in OWTs 1 and 2, and OLI
spectral bands do not cover this range (Fig. 7). Adding the OLI
panchromatic band (503–676 nm) improved the performance
of MLP with a ∼2% decrease in MdSA compared with the
scenario of removing it from the input features (results of
the latter are not presented here). But MLP-OLI had the
worst performance among all hyperspectral and multispectral
scenarios. Also, a cross correlation between Rrs and other
OACs can occur at selected wavelengths where employing
HICO bands can potentially untangle this complexity. For
example, in OWT4, 673 nm is in the range of wavelengths
contributing the most information in PC retrieval; however,
it could be a cross correlation of PC and Chla with Rrs.

Metsamaa et al. [15] show that hyperspectral reflectance,
with 10-nm spectral resolution and high signal-to-noise ratio
(SNR > 1000:1), is required to capture the cyanobacteria char-
acteristic double feature seen in relatively clear, cyanobacteria-
dominated waters (PC absorption feature at 630 nm and
reflectance peak at 650 nm for the Baltic Sea). On the
other hand, the drawback in most of the current multispectral
satellite sensors is their lack of specific spectral bands to
capture this specific spectral feature [18]. Between past and
current satellite sensors, OLCI and its heritage MERIS are
the most appropriate options that meet the minimum spectral
requirement to detect optical characteristics of cyanobacteria,
the absorption peak near 620 nm, for accurate PC detection
and monitoring. Landsat Next will provide continuity with
instruments onboard Landsat-8 and -9 and compatibility with
Sentinel-2 data. The proposed additional narrow spectral bands
(∼20-nm FWHM) include the orange (620 nm) and red
(650 nm) part of the spectrum to retrieve Chla, PC, and
turbidity. Thus, the LNext multispectral measurement concept
will also cover the double spectral feature of PC with bands
centered at 620 and 650 nm.

C. Sample Size

In estimation problems, the available training sample size
must be large enough to span the complexity of optical
conditions so that the model is able to accommodate the avail-
able training samples reasonably well and generalize to new
data [124]. Therefore, a fivefold cross validation approach was
used in the training process to assess how well each scenario

can approximate PC. The learning curves in Fig. 14 show the
training and cross validation MdSA errors when MLP models
are trained to hyperspectral and multispectral datasets using
differently sized training datasets. In the MLP-OLI model,
the training and cross validation errors did not increase and
decrease, respectively, when the size of training data increased.
Also, the gap between calculated MdSA errors in training and
cross validation was small for different sizes of training data.
Therefore, increasing the training data size did not improve
its performance and this model produced the highest MdSA
errors compared with other models when it was trained using
all training data. The MLP-OLI model was unable to capture
the hidden underlying patterns between input spectral features
(five OLI bands including the panchromatic band) and PC.
Increasing the size of training data increased the training
MdSA error and decreased the cross validation MdSA error
for MLP models applied to HICO, PRISMA, OLCI, MSI, and
LNext. The MdSA curves for training and cross validation in
MLP-MSI and MLP-LNext did not change significantly after
using a training dataset with a size of ∼400.

When all training data were used, the training MdSA
error for MLP-MSI was more than the ones for MLP-HICO,
MLP-PRISMA, MLP-OLCI, and MLP-LNext. Also, the gap
between cross validation and training MdSA errors in MLP-
MSI was shorter compared with MLP-HICO, MLP-PRISMA,
and MLP-OLCI. The shorter gap, as well as the larger MdSA
errors, implies that although the MLP-MSI model produced
low variance, this model was less successful in capturing the
data complexity compared with MLP-HICO, MLP-PRISMA,
MLP-OLCI, and MLP-LNext. The training and cross valida-
tion MdSA errors in MLP-HICO and MLP-PRISMA were
marginally lower than the ones for MLP-OLCI and MLP-
LNext when all data were used for training. MLP-LNext
performed closely to MLP-OLCI. This demonstrates that,
with the same sample size of ∼600, MLP-HICO and MLP-
PRISMA were better in modeling the patterns in the spectral
input features and their complex nonlinear relationships with
PC. That said, the MdSA value of these models is still larger
than (or around) the uncertainties in field-based measurements.
These uncertainties arise from random and systematic errors
and are propagated to the model predictions [122]. Even
though the test dataset (N = 181) was independent of the
data used in the training of each ML model, the data were
still originating from the same study sites with similar optical
characteristics as the training dataset which brings uncertain-
ties in the generalizability of the conclusions of this study to
other sites.

D. Uncertainty in In Situ Radiometry Data

The assumption of an angular distribution of upwelling
radiance just beneath the surface (BRDF), that is independent
of the viewing direction (i.e., a diffuse BRDF), is expected
to introduce uncertainty in Rrs. Although BRDF correction
algorithms are developed in the literature [125], creating a
correction factor applicable to all OWTs is challenging and
is likely to introduce more uncertainty and error, due to
assumptions on the relationship of upwelling radiance with
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Fig. 15. (Left) MdSA of each PLS model developed using the selected number of components (y-axis) and discarding a subset of hyperspectral data with
the lowest importance metric values (x-axis). MdSA values are calculated in a fivefold cross validation approach. The gray area shows the number of bands
that were not excluded due to the required minimum number of bands to achieve a PLSR model with the specified n_components. The black box shows
the number of components and number of discarded bands that produced the lowest MdSA value. (Right) MdSA of each PLS model developed with 11
components and discarding different numbers of bands (x-axis) with the lowest importance metric values.

absorption and backscatter in different OWTs. The dataset
in this study is a combination of different instruments and
methodological approaches (with different illumination and
viewing geometries), and data analysis methods (with different
air–water interface effect correction approaches), in waters
with varying optical conditions. This will introduce by nature
a level of unavoidable variability and uncertainty in the Rrs

dataset.

V. CONCLUSION

Results of this study show that when developing algorithms
applicable to different optical water conditions is considered,
the performance of MLP models applied to hyperspectral data
(including HICO and PRISMA) surpasses that of those applied
to multispectral datasets with median biases of ∼73%, 93%,
126%, and 83% for OLCI, MSI, OLI, and LNext, respectively.
Therefore, this study quantifies the MLP performance loss
when datasets with lower spectral resolutions are used for PC
mapping. Knowing the extent of performance loss, researchers
can either employ hyperspectral data at the cost of computa-
tional complexity, or alternatively utilize datasets with reduced
spectral capability in the absence of hyperspectral data. A few
selected band-ratio algorithms, that target PC absorption at
620 nm, were also tested in this study. Results showed that
these models performed poorly in comparison with ML models
applied to hyperspectral and multispectral datasets.

The performance assessment of different scenarios was also
conducted for the derived optical conditions in the matchup
dataset. MLP applied to HICO and PRISMA outperformed
other scenarios when the optical water type includes waters
lowest in PC and Chla (i.e., OWTs 1 and 2) and also highest in
PC and Chla (i.e., OWT4), and when cyanobacteria were not
dominant (PC:Chla < 1). MLP applied to LNext performed
best between other multispectral scenarios in OWT1. When
cyanobacteria were dominant (PC:Chla ≥ 1), MLP-OLCI
outperformed other scenarios in estimating PC. A correlation
analysis was also conducted on HICO-resampled Rrs data,
to find the band with the highest correlation with PC in each
OWT. The most relevant information for PC retrieval was

around the PC absorption peak (∼620 nm) for OWTs 3, 4, and
5. The longer wavelengths in the spectrum (>700 nm) carried
the most information for PC retrieval in OWTs 1 and 2. Shorter
wavelengths in the blue region seem to play the most important
role in PC estimation for OWTs 1 (typical optical condition
in coastal and oligotrophic waters), 4 (eutrophic water), and 5
(sediment-rich waters). These correlation analyses reinforced
the value of employing hyperspectral data to extract PC in
different water types. Band-ratio algorithms (albeit incorpo-
rating selected red edge bands) and multispectral datasets
cannot investigate the full spectrum. We conclude that for a
robust estimation of PC in optically complex waters where
the characteristic spectral features are commonly masked,
hyperspectral Rrs offers adequate spectral cues to retrieval ML
algorithms adept at mining relevant information. MLP model
advances PC estimation from in situ hyperspectral radiometric
data [126] and/or highly accurate atmospherically corrected
remote sensing data and enables categorical discrimination of
PC-dominated Cyano HABs.

This study is particularly informative for future research and
operations when merged PC products from multispectral and
hyperspectral instruments are desired. Important pathways are
the future Landsat Next mission that can also make headway
in PC retrieval.

APPENDIX

Tuning ML parameters for hyperspectral and multispectral
datasets are summarized as below.

PLSR: Fig. 15 (left) illustrates the change in MdSA values
with different numbers of n_components and discarded bands,
calculated based on the training dataset in a fivefold cross
validation. The lowest MdSA value of 113.25 was produced
for a PLSR model with 11 components when discarding the
50 bands with the lowest importance. The sensitivity of the
PLSR model with 11 components to the number of discarded
bands with the lowest importance is shown in Fig. 15 (right).
Fig. 16 illustrates the importance metrics calculated for each
HICO band in the optimized PLSR model. The discarded
bands are shown in red bars.
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Fig. 16. HICO bands sorted based on the PLSR importance metric. The red bars are the discarded bands.

Fig. 17. HICO bands sorted based on the XGBoost feature importance metric.

SVR: The model hyperparameters including C and gamma
were tuned in a grid-search approach applied to the HICO
training dataset in a fivefold cross validation. The minimum
value of 68.40 for MdSA was produced with values of 100 and
0.01 for C and gamma, respectively.

XGBoost: The grid-search approach, applied to the training
dataset, examined MdSA values in a fivefold cross validation,
to tune the XGBoost hyperparameters values for HICO bands
as input features. Results showed that the minimum MdSA
value of 74.85 was produced with values of 0.7, 7, 18,
and 0.9 for colsample_bytree, max_depth, n_estimators, and
subsample, respectively. Lambda and alpha were 0.001 and
0.01, respectively. The feature importance metrics calculated
for each HICO band in the optimized XGBoost model are
shown in Fig. 17.

MLP: The lowest MdSA value of 55.66 was produced in
a grid-search approach applied to the HICO training dataset
in a fivefold cross validation, with a tanh activation function,
“constant” for the learning rate, and LBFGS solver. The values
for alpha and the number of nodes in each of three hidden
layers were tuned at 0.001 and (10, 8, 4), respectively.

The MLP models tuned for PRISMA and multispec-
tral datasets had the same learning rate (constant) and
solver (LBFGS) as the final MLP model applied to HICO.
Activation function for MLP-PRISMA, MLP-OLCI, and
MLP-OLI was tanh. ReLU was selected as the activation
function in MLP-MSI, and MLP-LNext. The values for alpha
were tuned at 0.001, 0.001, 0.1, 0.01, and 0.001 for PRISMA,
OLCI, MSI, OLI, and LNext, respectively. The number of
nodes in each hidden layer for MLP applied to PRISMA,
OLCI, MSI, OLI, and LNext was (8, 4), (8, 10, 2), (10, 8, 6),
(8, 8), and (10, 2, 4), respectively.

ACKNOWLEDGMENT

The authors would like to thank Steve Ruberg (NOAA-
GLERL) for providing the field data. Financial assistance
was provided through the Global Water Futures program,
Transformative Sensor Technologies and Smart Watershed
project (C.R. Duguay, PI). Any use of trade, firm, or product
names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

REFERENCES

[1] Toxic Cyanobacteria in Water, 2nd ed. World Health Organization,
Geneva, Switzerland, 2021.

[2] S. Mishra, D. Mishra, and W. Schluchter, “A novel algorithm for
predicting phycocyanin concentrations in cyanobacteria: A proximal
hyperspectral remote sensing approach,” Remote Sens., vol. 1, no. 4,
pp. 758–775, Oct. 2009, doi: 10.3390/rs1040758.

[3] W. W. Carmichael and G. L. Boyer, “Health impacts from cyanobac-
teria harmful algae Blooms: Implications for the North American
Great Lakes,” Harmful Algae, vol. 54, pp. 194–212, Apr. 2016, doi:
10.1016/j.hal.2016.02.002.

[4] R. Helmer, I. Hespanhol, and E. B. Welch. (1997). Water Pollution
Control-A Guide to the Use of Water Quality Management Principles.
[Online]. Available: http://www.earthprint.com

[5] D. Sun et al., “A novel support vector regression model to estimate the
phycocyanin concentration in turbid inland waters from hyperspectral
reflectance,” Hydrobiologia, vol. 680, no. 1, pp. 199–217, Jan. 2012,
doi: 10.1007/s10750-011-0918-7.

[6] T. T. Wynne, R. P. Stumpf, M. C. Tomlinson, and J. Dyble, “Charac-
terizing a cyanobacterial Bloom in Western Lake Erie using satellite
imagery and meteorological data,” Limnol. Oceanogr., vol. 55, no. 5,
pp. 2025–2036, 2010, doi: 10.4319/lo.2010.55.5.2025.

[7] R. P. Stumpf, T. T. Wynne, D. B. Baker, and G. L. Fahnenstiel,
“Interannual variability of cyanobacterial Blooms in Lake Erie,” PLoS
ONE, vol. 7, no. 8, Jan. 2012, Art. no. e42444, doi: 10.1371/
journal.pone.0042444.

[8] M. Kahru and R. Elmgren, “Multidecadal time series of satellite-
detected accumulations of cyanobacteria in the Baltic Sea,” Biogeo-
sciences, vol. 11, no. 13, pp. 3619–3633, Jul. 2014, doi: 10.5194/bg-
11-3619-2014.

http://dx.doi.org/10.3390/rs1040758
http://dx.doi.org/10.1016/j.hal.2016.02.002
http://dx.doi.org/10.1007/s10750-011-0918-7
http://dx.doi.org/10.4319/lo.2010.55.5.2025
http://dx.doi.org/10.5194/bg-11-3619-2014
http://dx.doi.org/10.5194/bg-11-3619-2014
http://dx.doi.org/10.1371/journal.pone.0042444
http://dx.doi.org/10.1371/journal.pone.0042444


5515520 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[9] J. M. Clark et al., “Satellite monitoring of cyanobacterial harmful
algal Bloom frequency in recreational waters and drinking water
sources,” Ecol. Indicators, vol. 80, pp. 84–95, Sep. 2017, doi:
10.1016/j.ecolind.2017.04.046.

[10] E. A. Urquhart, B. A. Schaeffer, R. P. Stumpf, K. A. Loftin,
and P. J. Werdell, “A method for examining temporal changes in
cyanobacterial harmful algal Bloom spatial extent using satellite
remote sensing,” Harmful Algae, vol. 67, pp. 144–152, Jul. 2017, doi:
10.1016/j.hal.2017.06.001.

[11] S. Mishra, R. P. Stumpf, B. A. Schaeffer, P. J. Werdell, K. A. Loftin, and
A. Meredith, “Measurement of cyanobacterial Bloom magnitude using
satellite remote sensing,” Sci. Rep., vol. 9, no. 1, pp. 1–17, Dec. 2019,
doi: 10.1038/s41598-019-54453-y.

[12] A. Vander Woude, S. Ruberg, T. Johengen, R. Miller, and D. Stuart,
“Spatial and temporal scales of variability of cyanobacteria harmful
algal Blooms from NOAA GLERL airborne hyperspectral imagery,”
J. Great Lakes Res., vol. 45, no. 3, pp. 536–546, Jun. 2019, doi:
10.1016/j.jglr.2019.02.006.

[13] C. E. Binding, L. Pizzolato, and C. Zeng, “EOLakeWatch; deliv-
ering a comprehensive suite of remote sensing algal Bloom
indices for enhanced monitoring of Canadian eutrophic lakes,”
Ecol. Indicators, vol. 121, Feb. 2021, Art. no. 106999, doi:
10.1016/j.ecolind.2020.106999.

[14] A. G. Dekker, “Detection of optical water quality parameters for
eutrophic waters by high resolution remote sensing,” Ph.D. dissertation,
Vrije Univ. Amsterdam, Amsterdam, The Netherlands, 1993.

[15] L. Metsamaa, T. Kutser, and N. Strömbeck, “Recognising cyanobacter-
ial Blooms based on their optical signature: A modelling study,” Boreal
Environ. Res., vol. 11, no. 6, pp. 493–506, 2006.

[16] T. Kutser, “Passive optical remote sensing of cyanobacteria and
other intense phytoplankton Blooms in coastal and inland waters,”
Int. J. Remote Sens., vol. 30, no. 17, pp. 4401–4425, 2009, doi:
10.1080/01431160802562305.

[17] I. Ogashawara, D. Mishra, S. Mishra, M. Curtarelli, and J. Stech,
“A performance review of reflectance based algorithms for predicting
phycocyanin concentrations in inland waters,” Remote Sens., vol. 5,
no. 10, pp. 4774–4798, Sep. 2013, doi: 10.3390/rs5104774.

[18] Y. Yan, Z. Bao, and J. Shao, “Phycocyanin concentration retrieval in
inland waters: A comparative review of the remote sensing techniques
and algorithms,” J. Great Lakes Res., vol. 44, no. 4, pp. 748–755,
Aug. 2018, doi: 10.1016/j.jglr.2018.05.004.

[19] R. K. Vincent et al., “Phycocyanin detection from LANDSAT TM
data for mapping cyanobacterial Blooms in Lake Erie,” Remote
Sens. Environ., vol. 89, no. 3, pp. 381–392, Feb. 2004, doi:
10.1016/j.rse.2003.10.014.

[20] R. K. Vincent, Fundamentals of Geological and Environmental Remote
Sensing. Upper Saddle River, NJ, USA: Prentice-Hall, 1997.

[21] L. Li, R. E. Sengpiel, D. L. Pascual, L. P. Tedesco,
J. S. Wilson, and A. Soyeux, “Using hyperspectral remote sensing to
estimate chlorophyll-α and phycocyanin in a mesotrophic reservoir,”
Int. J. Remote Sens., vol. 31, no. 15, pp. 4147–4162, 2010, doi:
10.1080/01431161003789549.

[22] S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing
of the cyanobacterial pigment phycocyanin in turbid inland water,”
Limnol. Oceanogr., vol. 50, no. 1, pp. 237–245, Jan. 2005, doi:
10.4319/lo.2005.50.1.0237.

[23] P. D. Hunter, A. N. Tyler, L. Carvalho, G. A. Codd, and
S. C. Maberly, “Hyperspectral remote sensing of cyanobacterial pig-
ments as indicators for cell populations and toxins in eutrophic lakes,”
Remote Sens. Environ., vol. 114, pp. 2705–2718, Nov. 2010, doi:
10.1016/j.rse.2010.06.006.

[24] C. Le, Y. Li, Y. Zha, Q. Wang, H. Zhang, and B. Yin, “Remote sensing
of phycocyanin pigment in highly turbid inland waters in Lake Taihu,
China,” Int. J. Remote Sens., vol. 32, no. 23, pp. 8253–8269, Dec. 2011,
doi: 10.1080/01431161.2010.533210.

[25] M. W. Matthews, S. Bernard, and L. Robertson, “An algorithm
for detecting trophic status (chlorophyll-α), cyanobacterial-dominance,
surface scums and floating vegetation in inland and coastal waters,”
Remote Sens. Environ., vol. 124, pp. 637–652, Sep. 2012, doi:
10.1016/j.rse.2012.05.032.

[26] M. W. Matthews and D. Odermatt, “Improved algorithm for rou-
tine monitoring of cyanobacteria and eutrophication in inland and
near-coastal waters,” Remote Sens. Environ., vol. 156, pp. 374–382,
Jan. 2015, doi: 10.1016/j.rse.2014.10.010.

[27] T. T. Wynne et al., “Relating spectral shape to cyanobacterial Blooms
in the Laurentian Great Lakes,” Int. J. Remote Sens., vol. 29, no. 12,
pp. 3665–3672, 2008, doi: 10.1080/01431160802007640.

[28] R. P. Stumpf et al., “Challenges for mapping cyanotoxin patterns from
remote sensing of cyanobacteria,” Harmful Algae, vol. 54, pp. 160–173,
Apr. 2016, doi: 10.1016/j.hal.2016.01.005.

[29] R. H. Ma, W. Kong, H. Duan, and S. Zhang, “Quantitative estimation of
phycocyanin concentration using MODIS imagery during the period of
cyanobacterial Blooming in Taihu Lake,” China Environ. Sci., vol. 29,
no. 3, pp. 254–260, 2009.

[30] T. Kutser, L. Metsamaa, N. Strömbeck, and E. Vahtmäe, “Monitor-
ing cyanobacterial Blooms by satellite remote sensing,” Estuarine,
Coastal Shelf Sci., vol. 67, nos. 1–2, pp. 303–312, Mar. 2006, doi:
10.1016/j.ecss.2005.11.024.

[31] A. Ruiz-Verdú, S. G. H. Simis, C. de Hoyos, H. J. Gons, and
R. Peña-Martínez, “An evaluation of algorithms for the remote sensing
of cyanobacterial biomass,” Remote Sens. Environ., vol. 112, no. 11,
pp. 3996–4008, Nov. 2008, doi: 10.1016/j.rse.2007.11.019.

[32] S. G. H. Simis, A. Ruiz-Verdú, J. A. Domínguez-Gómez,
R. Peña-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of
phytoplankton pigment composition on remote sensing of cyanobac-
terial biomass,” Remote Sens. Environ., vol. 106, no. 4, pp. 414–427,
Feb. 2007, doi: 10.1016/j.rse.2006.09.008.

[33] A. Morel and L. Prieur, “Analysis of variations in ocean color,”
Limnol. Oceanogr., vol. 22, no. 4, pp. 709–722, 1977, doi:
10.4319/lo.1977.22.4.0709.

[34] E. Vangi et al., “The new hyperspectral satellite PRISMA: Imagery
for forest types discrimination,” Sensors, vol. 21, no. 4, p. 1182, 2021,
doi: 10.3390/s21041182.

[35] J. Transon, R. d’Andrimont, A. Maugnard, and P. Defourny, “Survey
of hyperspectral earth observation applications from space in the
sentinel-2 context,” Remote Sens., vol. 10, no. 2, p. 157, 2018, doi:
10.3390/rs10020157.

[36] M. Drusch et al., “The fluorescence explorer mission concept—ESA’s
Earth explorer 8,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3,
pp. 1273–1284, Mar. 2017.

[37] K. Cawse-Nicholson et al., “NASA’s surface biology and geology
designated observable: A perspective on surface imaging algorithms,”
Remote Sens. Environ., vol. 257, May 2021, Art. no. 112349, doi:
10.1016/j.rse.2021.112349.

[38] H. R. Gordon et al., “A semianalytic radiance model of ocean color,”
J. Geophys. Res., Atmos., vol. 93, no. D9, pp. 10909–10924, Sep. 1988.

[39] H. R. Gordon and B. A. Franz, “Remote sensing of ocean color:
Assessment of the water-leaving radiance bidirectional effects on the
atmospheric diffuse transmittance for SeaWiFS and MODIS intercom-
parisons,” Remote Sens. Environ., vol. 112, no. 5, pp. 2677–2685,
May 2008, doi: 10.1016/j.rse.2007.12.010.

[40] G. Kim et al., “Hyperspectral imaging from a multipurpose floating
platform to estimate chlorophyll-α concentrations in irrigation pond
water,” Remote Sens., vol. 12, no. 13, p. 2070, Jun. 2020, doi:
10.3390/rs12132070.

[41] L. Wei, H. Pu, Z. Wang, Z. Yuan, X. Yan, and L. Cao, “Estimation
of soil arsenic content with hyperspectral remote sensing,” Sensors,
vol. 20, no. 14, p. 4056, 2020, doi: 10.3390/s20144056.

[42] K. Ryan and K. Ali, “Application of a partial least-squares regression
model to retrieve chlorophyll-α concentrations in coastal waters using
hyper-spectral data,” Ocean Sci. J., vol. 51, no. 2, pp. 209–221,
Jun. 2016, doi: 10.1007/s12601-016-0018-8.

[43] Z. Wang, Y. Sakuno, K. Koike, and S. Ohara, “Evaluation of
Chlorophyll-α estimation approaches using iterative stepwise elimi-
nation partial least squares (ISE-PLS) regression and several tradi-
tional algorithms from field hyperspectral measurements in the Seto
inland Sea, Japan,” Sensors, vol. 18, no. 8, p. 2656, Aug. 2018, doi:
10.3390/s18082656.

[44] J. Pyo et al., “An integrative remote sensing application of stacked
autoencoder for atmospheric correction and cyanobacteria estimation
using hyperspectral imagery,” Remote Sens., vol. 12, no. 7, p. 1073,
Mar. 2020, doi: 10.3390/rs12071073.

[45] N. Pahlevan et al., “Seamless retrievals of chlorophyll-α from sentinel-
2 (MSI) and sentinel-3 (OLCI) in inland and coastal waters: A machine-
learning approach,” Remote Sens. Environ., vol. 240, Apr. 2020,
Art. no. 111604, doi: 10.1016/j.rse.2019.111604.

[46] N. Pahlevan et al., “Hyperspectral retrievals of phytoplankton absorp-
tion and chlorophyll-α in inland and nearshore coastal waters,”
Remote Sens. Environ., vol. 253, Feb. 2021, Art. no. 112200, doi:
10.1016/j.rse.2020.112200.

http://dx.doi.org/10.1016/j.ecolind.2017.04.046
http://dx.doi.org/10.1016/j.hal.2017.06.001
http://dx.doi.org/10.1038/s41598-019-54453-y
http://dx.doi.org/10.1016/j.jglr.2019.02.006
http://dx.doi.org/10.1016/j.ecolind.2020.106999
http://dx.doi.org/10.1080/01431160802562305
http://dx.doi.org/10.3390/rs5104774
http://dx.doi.org/10.1016/j.jglr.2018.05.004
http://dx.doi.org/10.1016/j.rse.2003.10.014
http://dx.doi.org/10.1080/01431161003789549
http://dx.doi.org/10.4319/lo.2005.50.1.0237
http://dx.doi.org/10.1016/j.rse.2010.06.006
http://dx.doi.org/10.1080/01431161.2010.533210
http://dx.doi.org/10.1016/j.rse.2012.05.032
http://dx.doi.org/10.1016/j.rse.2014.10.010
http://dx.doi.org/10.1080/01431160802007640
http://dx.doi.org/10.1016/j.hal.2016.01.005
http://dx.doi.org/10.1016/j.ecss.2005.11.024
http://dx.doi.org/10.1016/j.rse.2007.11.019
http://dx.doi.org/10.1016/j.rse.2006.09.008
http://dx.doi.org/10.4319/lo.1977.22.4.0709
http://dx.doi.org/10.3390/s21041182
http://dx.doi.org/10.3390/rs10020157
http://dx.doi.org/10.1016/j.rse.2021.112349
http://dx.doi.org/10.1016/j.rse.2007.12.010
http://dx.doi.org/10.3390/rs12132070
http://dx.doi.org/10.3390/s20144056
http://dx.doi.org/10.1007/s12601-016-0018-8
http://dx.doi.org/10.3390/s18082656
http://dx.doi.org/10.3390/rs12071073
http://dx.doi.org/10.1016/j.rse.2019.111604
http://dx.doi.org/10.1016/j.rse.2020.112200


ZOLFAGHARI et al.: IMPACT OF SPECTRAL RESOLUTION ON QUANTIFYING CYANOBACTERIA IN LAKES AND RESERVOIRS 5515520

[47] J. G. Ghatkar, R. K. Singh, and P. Shanmugam, “Classification of
algal Bloom species from remote sensing data using an extreme
gradient boosted decision tree model,” Int. J. Remote Sens., vol. 40,
no. 24, pp. 9412–9438, Dec. 2019, doi: 10.1080/01431161.2019.
1633696.

[48] R. L. Lucke et al., “Hyperspectral imager for the coastal ocean:
Instrument description and first images,” Appl. Opt., vol. 50, no. 11,
pp. 1501–1516, Apr. 2011, doi: 10.1364/AO.50.001501.

[49] D. Labate et al., “The PRISMA payload optomechanical design, a
high performance instrument for a new hyperspectral mission,” Acta
Astronautica, vol. 65, nos. 9–10, pp. 1429–1436, Nov. 2009, doi:
10.1016/j.actaastro.2009.03.077.

[50] E. Spyrakos et al., “Optical types of inland and coastal waters,” Limnol.
Oceanogr., vol. 63, no. 2, pp. 846–870, 2018, doi: 10.1002/lno.10674.

[51] N. Pahlevan et al., “ACIX-Aqua: A global assessment of atmospheric
correction methods for landsat-8 and sentinel-2 over lakes, rivers,
and coastal waters,” Remote Sens. Environ., vol. 258, Jun. 2021,
Art. no. 112366, doi: 10.1016/j.rse.2021.112366.

[52] D. Gurlin, A. A. Gitelson, and W. J. Moses, “Remote estimation of
chl-α concentration in turbid productive waters—Return to a simple
two-band NIR-red model?” Remote Sens. Environ., vol. 115, no. 12,
pp. 3479–3490, Dec. 2011, doi: 10.1016/j.rse.2011.08.011.

[53] W. J. Moses et al., “Estimation of chlorophyll-α concentration
in turbid productive waters using airborne hyperspectral data,”
Water Res., vol. 46, no. 4, pp. 993–1004, Mar. 2012, doi:
10.1016/j.watres.2011.11.068.

[54] L. Li et al., “An inversion model for deriving inherent optical
properties of inland waters: Establishment, validation and applica-
tion,” Remote Sens. Environ., vol. 135, pp. 150–166, Aug. 2013, doi:
10.1016/j.rse.2013.03.031.

[55] L. Li, L. Li, and K. Song, “Remote sensing of freshwater
cyanobacteria: An extended IOP inversion model of inland waters
(IIMIW) for partitioning absorption coefficient and estimating phyco-
cyanin,” Remote Sens. Environ., vol. 157, pp. 9–23, Feb. 2015, doi:
10.1016/j.rse.2014.06.009.

[56] M. W. Matthews, S. Bernard, H. Evers-King, and L. Robertson Lain,
“Distinguishing cyanobacteria from algae in optically complex inland
waters using a hyperspectral radiative transfer inversion algorithm,”
Remote Sens. Environ., vol. 248, Oct. 2020, Art. no. 111981, doi:
10.1016/j.rse.2020.111981.

[57] M. Matthews and S. Bernard, “Characterizing the absorption properties
for remote sensing of three small optically-diverse South African
reservoirs,” Remote Sens., vol. 5, no. 9, pp. 4370–4404, Sep. 2013,
doi: 10.3390/rs5094370.

[58] L. Vanliere and R. D. Gualti, Restoration and Recoveryof Shallow
Eutrophic Lake Ecosystems in The Netherlands, Developments in
Hydrobiology. Norwell, MA, USA: Kluwer, 1992.

[59] R. Sarada, M. G. Pillai, and G. A. Ravishankar, “Phycocyanin from
Spirulina sp: Influence of processing of biomass on phycocyanin
yield, analysis of efficacy of extraction methods and stability studies
on phycocyanin,” Process Biochem., vol. 34, no. 8, pp. 795–801,
1999.

[60] K. Randolph, J. Wilson, L. Tedesco, L. Li, D. L. Pascual, and
E. Soyeux, “Hyperspectral remote sensing of cyanobacteria in turbid
productive water using optically active pigments, chlorophyll α and
phycocyanin,” Remote Sens. Environ., vol. 112, no. 11, pp. 4009–4019,
Nov. 2008, doi: 10.1016/j.rse.2008.06.002.

[61] D. E. Stewart and F. H. Farmer, “Extraction, identification, and
quantitation of phycobiliprotein pigments from phototrophic plankton,”
Limnol. Oceanogr., vol. 29, no. 2, pp. 392–397, Mar. 1984, doi:
10.4319/lo.1984.29.2.0392.

[62] Y. Z. Yacobi, J. Köhler, F. Leunert, and A. Gitelson, “Phycocyanin-
specific absorption coefficient: Eliminating the effect of chlorophylls
absorption,” Limnol. Oceanogr.: Methods, vol. 13, no. 4, pp. 157–168,
2015, doi: 10.1002/lom3.10015.

[63] E.-A. Nusch, “Comparison of different methods for chlorophyll and
phaeopigment determination,” Arch. für Hydrobiol. Ergebnisse der
Limnol., vol. 14, pp. 14–36, Mar. 1980.

[64] N.-A. Welschmeyer, “Fluorometric analysis of chlorophyll α in the
presence of chlorophyll b and pheopigments,” Limnol. Oceanogr.,
vol. 39, pp. 1985–1992, Dec. 1994.

[65] B. J. Speziale, S. P. Schreiner, P. A. Giammatteo, and J. E. Schindler,
“Comparison of N,N -dimethylformamide, dimethyl sulfoxide, and
acetone for extraction of phytoplankton chlorophyll,” Can. J. Fish-
eries Aquatic Sci., vol. 41, no. 10, pp. 1519–1522, Oct. 1984, doi:
10.1139/f84-187.

[66] H. Horváth, A. W. Kovács, C. Riddick, and M. Présing, “Extrac-
tion methods for phycocyanin determination in freshwater fila-
mentous cyanobacteria and their application in a shallow lake,”
Eur. J. Phycol., vol. 48, no. 3, pp. 278–286, Aug. 2013, doi:
10.1080/09670262.2013.821525.

[67] Manual of Analytical Methods, Major Ions and Nutrients, ECCC,
Burlington, ON, Canada, 1997.

[68] D. P. Sartory and J. U. Grobbelaar, “Extraction of chlorophyll
α from freshwater phytoplankton for spectrophotometric analy-
sis,” Hydrobiologia, vol. 114, no. 3, pp. 177–187, Jul. 1984, doi:
10.1007/BF00031869.

[69] A. Bennett and L. Bogorad, “Complementary chromatic adaptation in a
filamentous blue-green alga,” J. Cell Biol., vol. 58, no. 2, pp. 419–435,
Aug. 1973, doi: 10.1083/jcb.58.2.419.

[70] S. W. Wright, S. W. Jeffrey, and R. F. C. Mantoura, Phytoplankton
Pigments in Oceanography: Guidelines to Modern Methods. Paris,
France: Unesco, 1997.

[71] V. W. F. A. Quesada, “Adaptation of cyanobacteria to the light regime
within Antarctic microbial mats,” Int. Vereinigung für Theoretische Und
Angew. Limnol., vol. 25, no. 2, pp. 960–965, 1003.

[72] C. D. Mobley, “Estimation of the remote-sensing reflectance from
above-surface measurements,” Appl. Opt., vol. 38, no. 36, p. 7442,
Dec. 1999, doi: 10.1364/ao.38.007442.

[73] J. L. Mueller et al., “Radiometric measurements and data analysis
protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor
Validation, Revision 4, vol. 3, J. L. Mueller, G. S. Fargion, and
C. R. Mcclain, Eds. Greenbelt, MD, USA: Goddard Space Flight Space
Centre, 2003, pp. 1–78.

[74] A. A. Gitelson et al., “A simple semi-analytical model for remote
estimation of chlorophyll-α in turbid waters: Validation,” Remote
Sens. Environ., vol. 112, no. 9, pp. 3582–3593, Sep. 2008, doi:
10.1016/j.rse.2008.04.015.

[75] X. Quan and E. S. Fry, “Empirical equation for the index of refraction
of seawater,” Appl. Opt., vol. 34, no. 18, p. 3477, Jun. 1995, doi:
10.1364/ao.34.003477.

[76] A. Morel and S. Maritorena, “Bio-optical properties of oceanic
waters: A reappraisal,” J. Geophys. Res.: Oceans, vol. 106, no. C4,
pp. 7163–7180, Apr. 2001, doi: 10.1029/2000jc000319.

[77] S. Hlaing et al., “Assessment of a bidirectional reflectance distribu-
tion correction of above-water and satellite water-leaving radiance in
coastal waters,” Appl. Opt., vol. 51, no. 2, pp. 220–237, 2012, doi:
10.1364/AO.51.000220.

[78] C. E. Binding, A. Zastepa, and C. Zeng, “The impact of phytoplankton
community composition on optical properties and satellite observations
of the 2017 Western Lake Erie algal Bloom,” J. Great Lakes Res.,
vol. 45, no. 3, pp. 573–586, Jun. 2019, doi: 10.1016/j.jglr.2018.11.015.

[79] J. Wei, Z. Lee, M. Lewis, N. Pahlevan, M. Ondrusek, and R. Armstrong,
“Radiance transmittance measured at the ocean surface,” Opt. Exp.,
vol. 23, no. 9, p. 11826, May 2015, doi: 10.1364/oe.23.011826.

[80] V. Vantrepotte, H. Loisel, D. Dessailly, and X. Mériaux, “Optical
classification of contrasted coastal waters,” Remote Sens. Environ.,
vol. 123, pp. 306–323, Aug. 2012, doi: 10.1016/j.rse.2012.03.004.

[81] R. A. Vandermeulen, A. Mannino, A. Neeley, J. Werdell, and
R. Arnone, “Determining the optimal spectral sampling frequency
and uncertainty thresholds for hyperspectral remote sensing of ocean
color,” Opt. Exp., vol. 25, no. 16, p. A785, Aug. 2017, doi:
10.1364/oe.25.00a785.

[82] Z. Lee, K. Carder, R. Arnone, and M. He, “Determination of primary
spectral bands for remote sensing of aquatic environments,” Sensors,
vol. 7, no. 12, pp. 3428–3441, Dec. 2007, doi: 10.3390/s7123428.

[83] A. Wolanin, M. A. Soppa, and A. Bracher, “Investigation of spec-
tral band requirements for improving retrievals of phytoplankton
functional types,” Remote Sens., vol. 8, no. 10, p. 871, 2016, doi:
10.3390/rs8100871.

[84] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011. [Online]. Available:
http://jmlr.org/papers/v12/pedregosa11a.html

[85] H. Wold, “Estimation of principal components and related models by
iterative least squares,” in Multivariate Analysis, P. R. Krishnajah, Ed.
New York, NY, USA: Academic, 1966, pp. 391–420.

[86] G. Hanrahan, F. Udeh, and D. G. Patil, “Chemometrics and statistics–
multivariate calibration techniques,” in Encyclopedia of Analytical Sci-
ence, 2nd ed. Amsterdam, The Netherlands: Elsevier, 2004, pp. 27–32.

[87] P. D. Wentzell and L. V. Montoto, “Comparison of principal compo-
nents regression and partial least squares regression through generic
simulations of complex mixtures,” Chemometrics Intell. Lab. Syst.,
vol. 65, no. 2, pp. 257–279, 2003, doi: 10.1016/S0169-7439(02)
00138-7.

http://dx.doi.org/10.1364/AO.50.001501
http://dx.doi.org/10.1016/j.actaastro.2009.03.077
http://dx.doi.org/10.1002/lno.10674
http://dx.doi.org/10.1016/j.rse.2021.112366
http://dx.doi.org/10.1016/j.rse.2011.08.011
http://dx.doi.org/10.1016/j.watres.2011.11.068
http://dx.doi.org/10.1016/j.rse.2013.03.031
http://dx.doi.org/10.1016/j.rse.2014.06.009
http://dx.doi.org/10.1016/j.rse.2020.111981
http://dx.doi.org/10.3390/rs5094370
http://dx.doi.org/10.1016/j.rse.2008.06.002
http://dx.doi.org/10.4319/lo.1984.29.2.0392
http://dx.doi.org/10.1002/lom3.10015
http://dx.doi.org/10.1139/f84-187
http://dx.doi.org/10.1080/09670262.2013.821525
http://dx.doi.org/10.1007/BF00031869
http://dx.doi.org/10.1083/jcb.58.2.419
http://dx.doi.org/10.1364/ao.38.007442
http://dx.doi.org/10.1016/j.rse.2008.04.015
http://dx.doi.org/10.1364/ao.34.003477
http://dx.doi.org/10.1029/2000jc000319
http://dx.doi.org/10.1364/AO.51.000220
http://dx.doi.org/10.1016/j.jglr.2018.11.015
http://dx.doi.org/10.1364/oe.23.011826
http://dx.doi.org/10.1016/j.rse.2012.03.004
http://dx.doi.org/10.1364/oe.25.00a785
http://dx.doi.org/10.3390/s7123428
http://dx.doi.org/10.3390/rs8100871
http://dx.doi.org/10.1080/01431161.2019.1633696
http://dx.doi.org/10.1080/01431161.2019.1633696
http://dx.doi.org/10.1016/S0169-7439(02)00138-7
http://dx.doi.org/10.1016/S0169-7439(02)00138-7


5515520 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[88] S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: A basic
tool of chemometrics,” Chemometrics Intell. Lab. Syst., vol. 58, no. 2,
pp. 109–130, 2001, doi: 10.1016/S0169-7439(01)00155-1.

[89] K. Kawamura, N. Watanabe, S. Sakanoue, and Y. Inoue, “Estimat-
ing forage biomass and quality in a mixed sown pasture based on
partial least squares regression with waveband selection,” Grassland
Sci., vol. 54, no. 3, pp. 131–145, Sep. 2008, doi: 10.1111/j.1744-
697x.2008.00116.x.

[90] K. C. Flynn, A. E. Frazier, and S. Admas, “Nutrient prediction
for tef (Eragrostis tef) plant and grain with hyperspectral data and
partial least squares regression: Replicating methods and results across
environments,” Remote Sens., vol. 12, no. 18, p. 2867, Sep. 2020, doi:
10.3390/rs12182867.

[91] P. Sinha et al., “The potential of in-situ hyperspectral remote sensing
for differentiating 12 banana genotypes grown in Uganda,” ISPRS
J. Photogramm. Remote Sens., vol. 167, pp. 85–103, Sep. 2020, doi:
10.1016/j.isprsjprs.2020.06.023.

[92] A. L. Robertson, L. Li, L. Tedesco, J. Wilson, and E. Soyeux, “Using
a partial least squares (PLS) method for estimating cyanobacterial
pigments in eutrophic inland waters,” Proc. SPIE, vol. 7454, Aug. 2009,
Art. no. 745408, doi: 10.1117/12.824632.

[93] K. Song, L. Li, S. Li, L. Tedesco, B. Hall, and Z. Li, “Hyperspec-
tral retrieval of phycocyanin in potable water sources using genetic
algorithm–partial least squares (GA–PLS) modeling,” Int. J. Appl.
Earth Observ. Geoinf., vol. 18, no. 1, pp. 368–385, Aug. 2012, doi:
10.1016/j.jag.2012.03.013.

[94] K. Song, D. Lu, L. Li, S. Li, Z. Wang, and J. Du, “Remote sens-
ing of chlorophyll-α concentration for drinking water source using
genetic algorithms (GA)-partial least square (PLS) modeling,” Ecol.
Informat., vol. 10, pp. 25–36, Jul. 2012, doi: 10.1016/j.ecoinf.2011.
08.006.

[95] K. Song et al., “Remote estimation of chlorophyll-α in turbid inland
waters: Three-band model versus GA-PLS model,” Remote Sens.
Environ., vol. 136, pp. 342–357, Sep. 2013, doi: 10.1016/j.rse.2013.
05.017.

[96] K. Song et al., “Using partial least squares-artificial neural net-
work for inversion of inland water chlorophyll-α,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 2, pp. 1502–1517, Feb. 2014, doi:
10.1109/TGRS.2013.2251888.

[97] K. Song, L. Li, L. P. Tedesco, S. Li, B. E. Hall, and J. Du, “Remote
quantification of phycocyanin in potable water sources through an adap-
tive model,” ISPRS J. Photogramm. Remote Sens., vol. 95, pp. 68–80,
Sep. 2014, doi: 10.1016/j.isprsjprs.2014.06.008.

[98] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995, doi: 10.1007/BF00994018.

[99] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and
V. Vapnik, “Support vector regression machines,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 9, 1997, pp. 155–161. [Online]. Available:
https://proceedings.neurips.cc/paper/1996/file/d38901788c533e
8286cb6400b40b386d-Paper.pdf

[100] E. J. Kwiatkowska and G. S. Fargion, “Application of machine-learning
techniques toward the creation of a consistent and calibrated global
chlorophyll concentration baseline dataset using remotely sensed ocean
color data,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 12,
pp. 2844–2860, Dec. 2003, doi: 10.1109/TGRS.2003.818016.

[101] A. B. Ruescas, M. Hieronymi, G. Mateo-Garcia, S. Koponen, K. Kallio,
and G. Camps-Valls, “Machine learning regression approaches for
colored dissolved organic matter (CDOM) retrieval with S2-MSI and
S3-OLCI simulated data,” Remote Sens., vol. 10, no. 5, p. 786, 2018,
doi: 10.3390/rs10050786.

[102] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
vols. 13–17, Aug. 2016, pp. 785–794.

[103] L. Wu and J. Fan, “Comparison of neuron-based, kernel-based, tree-
based and curve-based machine learning models for predicting daily
reference evapotranspiration,” PLoS ONE, vol. 14, no. 5, May 2019,
Art. no. e0217520, doi: 10.1371/journal.pone.0217520.

[104] Z. Cao et al., “A machine learning approach to estimate chlorophyll-α
from Landsat-8 measurements in inland lakes,” Remote Sens. Environ.,
vol. 248, Oct. 2020, Art. no. 111974, doi: 10.1016/j.rse.2020.111974.

[105] F. Rosenblatt, Principles of Neurodynamics: Perceptions and the The-
ory of Brain Mechanisms. Washington, DC, USA: Spartan, 1962.

[106] H. Schiller and R. Doerffer, “Neural network for emulation of an
inverse model operational derivation of case II water properties from
MERIS data,” Int. J. Remote Sens., vol. 20, no. 9, pp. 1735–1746,
Jan. 1999, doi: 10.1080/014311699212443.

[107] R. Doerffer and H. Schiller, “The MERIS case 2 water algorithm,”
Int. J. Remote Sens., vol. 28, nos. 3–4, pp. 517–535, Feb. 2007, doi:
10.1080/01431160600821127.

[108] L. González Vilas, E. Spyrakos, and J. M. Torres Palenzuela,
“Neural network estimation of chlorophyll a from MERIS full res-
olution data for the coastal waters of Galician rias (NW Spain),”
Remote Sens. Environ., vol. 115, no. 2, pp. 524–535, Feb. 2011, doi:
10.1016/j.rse.2010.09.021.

[109] D. Odermatt et al., “MERIS observations of phytoplankton Blooms
in a stratified eutrophic lake,” Remote Sens. Environ., vol. 126,
pp. 232–239, Nov. 2012, doi: 10.1016/j.rse.2012.08.031.

[110] S. C. J. Palmer et al., “Validation of ENVISAT MERIS algorithms for
chlorophyll retrieval in a large, turbid and optically-complex shallow
lake,” Remote Sens. Environ., vol. 157, pp. 158–169, Feb. 2015, doi:
10.1016/j.rse.2014.07.024.

[111] A. Castagna, S. Simis, H. Dierssen, Q. Vanhellemont, K. Sabbe, and
W. Vyverman, “Extending landsat 8: Retrieval of an orange contra-
band for inland water quality applications,” Remote Sens., vol. 12, no. 4,
p. 637, 2020, doi: 10.3390/rs12040637.

[112] C. Liu, S. Q. Yin, M. Zhang, Y. Zeng, and J. Y. Liu, “An
improved grid search algorithm for parameters optimization on SVM,”
Appl. Mech. Mater., vols. 644–650, pp. 2216–2219, Sep. 2014, doi:
10.4028/www.scientific.net/AMM.644-650.2216.

[113] I. Syarif, A. Prugel-Bennett, and G. Wills, “SVM parameter optimiza-
tion using grid search and genetic algorithm to improve classification
performance,” Telkomnika, vol. 14, no. 4, pp. 1502–1509, 2016, doi:
10.12928/TELKOMNIKA.v14i4.3956.

[114] Y. Sun, S. Ding, Z. Zhang, and W. Jia, “An improved grid search
algorithm to optimize SVR for prediction,” Soft Comput., vol. 25, no. 7,
pp. 5633–5644, Apr. 2021, doi: 10.1007/s00500-020-05560-w.

[115] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Math. Program., vol. 45, no. 3, pp. 503–528,
1989.

[116] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade, 2nd ed., G. Montavon, G. B. Orr, and K.-R. Müller,
Eds. Berlin, Germany: Springer, 2012, pp. 421–436.

[117] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1–15.

[118] J. F. Schalles and Y. Z. Yacobi, “Remote detection and seasonal patterns
of phycocyanin, carotenoid and chlorophyll pigments in eutrophic
waters,” Ergebnisse Der Limnol., vol. 55, pp. 153–168, Feb. 2000.

[119] S. Mishra, “Remote sensing of harmful algal bloom,” Ph.D. disserta-
tion, Mississippi State Univ., Starkville, MS, USA, 2012.

[120] S. K. Morley, T. V. Brito, and D. T. Welling, “Measures of model
performance based on the log accuracy ratio,” Space Weather, vol. 16,
no. 1, pp. 69–88, Jan. 2018, doi: 10.1002/2017SW001669.

[121] V. Sagan et al., “Monitoring inland water quality using remote sensing:
Potential and limitations of spectral indices, bio-optical simulations,
machine learning, and cloud computing,” Earth-Sci. Rev., vol. 205,
Jun. 2020, Art. no. 103187, doi: 10.1016/j.earscirev.2020.103187.

[122] B. Smith et al., “A chlorophyll-α algorithm for Landsat-8 based
on mixture density networks,” Frontiers Remote Sens., vol. 1, p. 5,
Feb. 2021, doi: 10.3389/frsen.2020.623678.

[123] J. Pyo et al., “A convolutional neural network regression for quantifying
cyanobacteria using hyperspectral imagery,” Remote Sens. Environ.,
vol. 233, Nov. 2019, Art. no. 111350, doi: 10.1016/j.rse.2019.111350.

[124] A. F. Al-Anazi and I. D. Gates, “Support vector regression to predict
porosity and permeability: Effect of sample size,” Comput. Geosci.,
vol. 39, pp. 64–76, Feb. 2012, doi: 10.1016/j.cageo.2011.06.011.

[125] A. Gilerson et al., “Bidirectional reflectance function in coastal
waters: Modeling and validation,” Proc. SPIE, vol. 8175, Oct. 2011,
Art. no. 81750O, doi: 10.1117/12.898449.

[126] D. Vansteenwegen, K. Ruddick, A. Cattrijsse, Q. Vanhellemont, and
M. Beck, “The pan-and-tilt hyperspectral radiometer system (PAN-
THYR) for autonomous satellite validation measurements—Prototype
design and testing,” Remote Sens., vol. 11, no. 11, p. 1360, 2019, doi:
10.3390/rs11111360.

http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1111/j.1744-697x.2008.00116.x
http://dx.doi.org/10.1111/j.1744-697x.2008.00116.x
http://dx.doi.org/10.3390/rs12182867
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.023
http://dx.doi.org/10.1117/12.824632
http://dx.doi.org/10.1016/j.jag.2012.03.013
http://dx.doi.org/10.1109/TGRS.2013.2251888
http://dx.doi.org/10.1016/j.isprsjprs.2014.06.008
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/TGRS.2003.818016
http://dx.doi.org/10.3390/rs10050786
http://dx.doi.org/10.1371/journal.pone.0217520
http://dx.doi.org/10.1016/j.rse.2020.111974
http://dx.doi.org/10.1080/014311699212443
http://dx.doi.org/10.1080/01431160600821127
http://dx.doi.org/10.1016/j.rse.2010.09.021
http://dx.doi.org/10.1016/j.rse.2012.08.031
http://dx.doi.org/10.1016/j.rse.2014.07.024
http://dx.doi.org/10.3390/rs12040637
http://dx.doi.org/10.4028/www.scientific.net/AMM.644-650.2216
http://dx.doi.org/10.12928/TELKOMNIKA.v14i4.3956
http://dx.doi.org/10.1007/s00500-020-05560-w
http://dx.doi.org/10.1002/2017SW001669
http://dx.doi.org/10.1016/j.earscirev.2020.103187
http://dx.doi.org/10.3389/frsen.2020.623678
http://dx.doi.org/10.1016/j.rse.2019.111350
http://dx.doi.org/10.1016/j.cageo.2011.06.011
http://dx.doi.org/10.1117/12.898449
http://dx.doi.org/10.3390/rs11111360
http://dx.doi.org/10.1016/j.ecoinf.2011.08.006
http://dx.doi.org/10.1016/j.ecoinf.2011.08.006
http://dx.doi.org/10.1016/j.rse.2013.05.017
http://dx.doi.org/10.1016/j.rse.2013.05.017

